

Special considerations for proton SRS/SRT

Learning objectives

- Proton dose distributions as a function of field size (important for all sites) – physics, modeling, measurement
- Problems with heterogeneities (specifically lung)

Basic physics

- Ideal measurement & modeling conditions:
 - ➤ EM *&* nuclear equilibrium

Basic physics

- Ideal measurement & modeling conditions:
 - ➤ EM *&* nuclear equilibrium
- EM equilibrium is lost for much smaller field sizes than nuclear equilibrium

Basic physics

- Ideal measurement & modeling conditions:
 EM *&* nuclear equilibrium
- EM equilibrium is lost for much smaller field sizes than nuclear equilibrium
- proton dose distributions are field size dependent up to rather large diameters (~10cm)

Field size dependence

• Profiles vs field size

MGH 1811

Field size dependence

Depth dose vs field size – loosing the Bragg Peak

Field size dependence – passive scattering

Depth dose vs field size – tilted SOBP

Field size dependence – passive scattering dose @ reference point (SOBP center) output norm to 60mm field dia [%] STAR Gantry 80 70 ranges: 60 6.7cm 8.5cm 10.6cm 13.6cm 17.7cm 22.4cm ranges: 5.0cm 9.0cm 50 40 12.0cm 30 15.0cm 18.0cm 40 60 80 field diameter [mm] 120 40 60 80 field diameter [mm] 100

Which of the following have an impact on the function F(x) = dose(field size)1. Proton Energy, depth

20% 2. Beamline properties, T and P

3. Beamline properties, depth

^{20%} 4. Only energy

5. Beamline properties, depth, energy

10

Which of the following have an impact on the function F(x) = dose(field size)

- 1. Proton Energy, depth
- 2. Beamline properties, T and P
- 3. Beamline properties, depth
- 4. Only energy
- 5. Beamline properties, depth, energy

Dose Calculation

- Pencil beam algorithms
 - > limited accuracy, various versions

Hong et al, 1996

Dose Calculation

$$D(x,y,z) = \iint \psi_0(x',y') \frac{C(x',y',z)}{2\pi [\sigma_{tot}(x',y',z)]^2} \exp \left(-\frac{(x'-x)^2 + (y-y')^2}{2[\sigma_{tot}(x',y',z)]^2}\right) dx' dy'$$

- need to verify versus measurement:
 - relative decrease of dose with field size for clinically used range interval

Dose Calculation

- How to deal with this?
- > Alternatively: determine reasonable minimum treatable field size, correct MU/field outside TPS with measured field size correction factor

Dose Calculation

- How to deal with this?
- > Know your limits: consider referring too small, deep seated targets located in heterogeneous areas to photons

Measurements – Small fields

- · Choice of detector
 - > Small!
 - Watch out for: LET dependence, nonlinearity with dose
 - Reliable but limited due to size: PinPoint IC
- Very careful setup necessary

SRS with PBS

- define SRS: 1-2 fractions
- SRS with PBS: not currently done
- · difficulty: robustness
- a note on conformality: likely for many cases apertures and perhaps range compensators will be beneficial, depending on spot size

When delivering proton SRS it is critical to be aware of uncertainties.

Rank according to level of increasing difficulty:

- A passive scattering intra cranial 4cm target
- B IMPT intra cranial 4 cm target
- C passive scattering lung 2cm target
- D IMPT lung 2cm target

$$20\%$$
 3. A – C – B - D

When delivering proton SRS it is critical to be aware of uncertainties.

Rank according to level of increasing difficulty:

- A passive scattering intra cranial 5cm target
- B IMPT intra cranial 5 cm target
- C passive scattering lung 2cm target
- D IMPT lung 2cm target
- 1. A-B-C-D
- 2. C-D-B-A
- 3. A C B D
- 4. C-A-B-D
- 5. D-C-A-B

