# Clinical Challenges and Pitfalls for SBRT

#### John Cho, MD PhD

Radiation Oncologist Princess Margaret Cancer Centre Toronto, Canada





AAPM 2014

Princess Margaret Hospital University Health Network

#### **Therapeutic Modalities**





#### SBRT

- SBRT radioablative doses characterized by
  - extremely large dose per fraction
  - limited number of fractions (<5)
  - negligible fractionation effects
- any tissue receiving a full radioablative dose are
  - irreversibly damaged
  - negligible recovery and repair
- radioablation of normal tissue limits which organs can be safely treated with SBRT
  - serial vs. parallel



# **Organ at Risk Sparing**



![](_page_3_Picture_2.jpeg)

![](_page_3_Picture_3.jpeg)

# **Organ at Risk Sparing**

- lungs are have both serial and parallel organization
  → mixed
- ablation is tolerable only for parallel organs
  - redundancy needed
  - surgical resection of proximal bronchial tree only possible because ablated section repaired
- minimize toxicity by
  - constraining location of SBRT to peripheral lung  $\rightarrow$  parallel
  - tight conformal dose distribution  $\rightarrow$  steep dose gradients

![](_page_4_Picture_8.jpeg)

### **Paraspinal SBRT**

- because spinal cord is serial, SBRT technique tolerances used for parallel structures inadequate
- serial structures require very steep dose gradients to treat safely
- every link in therapeutic chain must be strong
  - immobilization: VacLok<sup>™</sup>, Vacuum Bag Cushion System
  - delineation: MR sim, myelogram
  - planning: VMAT
  - verification: IGRT, hexapod
  - delivery: high dose rate

![](_page_5_Picture_9.jpeg)

# Immobilization

![](_page_6_Picture_1.jpeg)

#### Delineation

- accurate and precise spinal cord delineation critical (~1 mm) → MR sim, myelogram (hardware)
- tolerances for other links should be similarly tight
- PRV margin is 1.5 mm

![](_page_7_Picture_4.jpeg)

# Planning

- VMAT uses continuous modulated arcs to deliver RT
- has better treating efficiency compared to step and shoot
- this, combined with high intensity dose rates, can significantly shorten overall treatment time
- risk of positional drift greater with
  - longer treatment times (>20 minutes)
  - poorer performance status patients

![](_page_8_Picture_7.jpeg)

#### Verification

- paraspinal SBRT feasible only with IGRT
- tolerances tight (<1 mm, <1°)</li>
- corrected with hexpod
- most challenging are "donut" targets

![](_page_9_Picture_5.jpeg)

# Thank you for your attention

![](_page_10_Picture_1.jpeg)