

Image guided brachytherapy: HDR treatments in the MR room

Astrid de Leeuw Department of Radiation Oncology University Medical Center Utrecht The Netherlands

UMC Utrecht: HDR treatments in the MR room, or an MR scanner in the Brachy suite

- Since 2010
- 1.5 T MR system at department Radiotherapy
- MR guided intervention
 - Brachytherapy
 - HIFU

Contents

• Why MR and

why MR in Brachy treatment room

- MR safety
- MRI guided brachytherapy in
 - Focal HDR prostate brachytherapy
 - Robotic prostate brachytherapy
 - oesophagus, head & neck
 - Gynaecology
- Workflow HDR for cervical cancer

IGABT for cervical cancer: GEC-ESTRO recommendations:

Target definition

MR based

- GTV (macroscopic tumor)
- HR-CTV (GTV + suspected microscopic tumor)
- IR-CTV (pre-treatment extension)

Reporting Dose Volume parameters

DVH: aims and constraints on total dose: EBRT + Brachytherapy

DVH analysis based on EQD2 with	: α/β(target)	=10 Gy
	α/β(OAR)	=3 Gy
	T _{1/2}	=1.5 h
Dose volume parameters:	target:	D90 and D98
	OAR:	D2cc

Common Language!!

Haie-Meder et al. Radiother Oncol 2005 Pötter et al. Radiother Oncol 2006

UMC Utrecht: since 2006 MR guided treatment

PDR in two applications, 2* 31 hours MR scans with applicator in situ MR at department radiology Optimization, combination Intracavitary/interstitial

0.93

0.71

0.65

LC

PFS

Clinical results 2006-2008 RETRO-Embrace

An intErnational study on MRI-guided BRachytherapy in locally Advanced CErvical cancer

>1100 patients, from >24 centers Preliminary Dose Effect analysis OAR

Bladder

Vagina Dose effect grade ≥ 2 morbidity

Strong rationale to decrease OAR dose

Fokdal et al. 2013

Kirchheiner et al 2013

Brachy treatment suite With 1.5 T MR scanner and HDR afterloader

Radiation Shielded treatment room with MR scanner 1.5 T **non** MR compatible HDR afterloader

MR compatible applicators, needles, tubes

MR compatible instruments/robotics

MR safety issues

Need for:

MR compatible instruments and applicators

Effort: Once before start

MR safety issues

5 Gauss marking on the floor for MR conditional equipment

Securing **non MRI compatible** equipment: HDR afterloader with double ropes.

MR safety issues: Training

Most experienced RTT's are trained/educated in operating MR scanner as well.

MR Safety procedures and -training developed

MR Safety training: conform hospital protocol: yearly for all staff, as well for anesthesia staff!!

HDR emergency procedure in MR: regularly trained: RTT's, physicians 5 minutes movie available

Combination training

MRI guided brachytherapy: HDR prostate

Focal HDR brachytherapy for localized cancer

- 19 Gy on focal tumors in single fraction(GTV+5mm margin)
- ONLY IF: Dose plan meets stringent constraints: Rectum and bladder: D1cc < 12 Gy, Urethra: D10% < 21 Gy

Procedure

- Pre brachy multi parametric MRI
- US guided insertion of catheters
 - Fusion with pre brachy MRI

low signal onT2

high Ktrans

• MRI

- Reconstruction
- Contouring Fusion with pre brachy MRI
- (Inverse) dose planning
- MRI (position verification)

Plannings MRI with PTV Position verification

low ADC

Groenendaal et al. IJROBP 2012;82:537-44

Development of robot and MR compatible afterloader

Setup with treatment length 1500 mm at 50 mm beyond isocenter MR; position test with film: source position within spec (error <0.5 mm)

The aim is to treat the patient in imaging position This is feasible,

with longer treatment cable and breaking the RF waves

Courtesy Moerland 2013

MRI guided brachytherapy: Studies Esophageal cancer

a) Delineation of the esophageal tumor on a T2 MR image

b) Markers indicate the tumour borders as determined with standard X-ray guided endoscopic procedure

Applicator tube with inner MR marker tube

Head & Neck

Potential benefit of MRI-guided brachytherapy for nasopharynx, lip, vestibulum nasi tumours

MRI guided brachytherapy: Gynecology

• Vaginal cylinders, endometrium cancer

Application, MR scan, visual inspection,irradiation standard plan, dose calculation➤ adaptation necessary?

Advanced cervical cancer

MRI guided brachytherapy: Advanced Cervical cancer

MRI guidance

- Accurate delineation of target volumes
- Additional needles help to increase target dose
- Adequate organ sparing
- Moderate morbidity rates
- Improvement of local control and cancer specific survival

Need for: MR scans with applicator and needles in situ Direct reconstruction on MR using models in TPS Direct delineation on MR

Uncertainties IGART cervix cancer BT

• Special issue Radiotherapy and Oncology

Radiotherapy and Oncology 107 (2013) 1-5

Editorial

Uncertainties in image guided adaptive cervix cancer brachytherapy: Impact on planning and prescription

Kari Tanderup^a, Nicole Nesvacil^b, Richard Pötter^b, Christian Kirisits^{b,*}

^a Dept. of Oncology, Aarhus University Hospital, Denmark; ^b Dept. of Radiotherapy and Oncology, Comprehensive Cancer Center & Christian Doppler Laboratory for Medical Research for Radiation Oncology, Medical University of Vienna, Austria

Intra- inter fraction dose variation

Image guided brachytherapy

A multicentre comparison of the dosimetric impact of inter- and intra-fractional anatomical variations in fractionated cervix cancer brachytherapy

Nicole Nesvacil^{a,*}, Kari Tanderup^b, Taran P. Hellebust^{c,d,e}, Astrid De Leeuw^f, Stefan Lang^a, Sandy Mohamed^{b,j}, Swamidas V. Jamema^g, Clare Anderson^h, Richard Pötter^{a,i}, Christian Kirisits^{a,i}

^a Department of Radiotherapy and Oncology. Comprehensive Cancer Center. Medical University of Vienna. Austria: ^b Department of Oncology, Aarhus University Hospital, ^b Department for Radiation Protection and Nuclear Safety, Norwegian Radiation Protection Authority: ^c Department of Physics, University Hospital, ^b Department of Radiation Protection Authority: ^c Department of Physics, University Hospital, ^d Department of Radiation Protection Authority: ^c Department of Physics, University Hospital, ^b Department of Radiation Oncology, University Medical Center Utrecht. The Netherlands; ^c Department of Medical Physics. Tata Memorial Hospital, Mumbai, India: ^b Chinical Physics Department, Mount Vernon Cancer Centre, UK; ^c Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Usia, Austria: ^b Department of Radiation Oncology, Medical Carlo University, Egypt

Intra-fraction dose variation UMC Utrecht:

PDR

- One fraction: ~30 hours treatment, one pulse every hour
- Dose variation during fraction due to OAR changes
- Systematic increase of rectum D2cc dose

Therefore change to:

HDR 2*2 fractions of 7 Gy (since brachy suite with MR)

Imaging workflow HDR patients (study: n=15)

Brachytherapy schedule HDR : 4*7Gy: 2 applications, with 2 fractions each

HDR workflow: image registration and calculation of DVH parameters on 'real'contours

MRplan

MRpre-/postfraction

DVH parameters on new contours

D2cc rectum 4.2 → 5.8 Gy

Treatment planning system: Oncentra/Elekta

Christel Nomden et al 2014

Example from first patients

MRI for treatment planning

MRI pre-radiation about 4 hours later

MRI after insertion of rectal probe

MRI post-radiation about 40 min later

- Difference in rectal filling: Increase of gas!
- Therefore:

• Rectum catheter in all HDR patients

• Adapt when necessary (de-gassing)

Comparison intra-fraction dose variation PDR versus HDR

Unfavourable systematic increase during PDR

Christel Nomden et al. 2014

Imaging workflow HDR patients: clinical practise

Brachytherapy schedule HDR : 4*7Gy: 2 applications, with 2 fractions each

- MR scan
 (MRpreApp)
- Application
- MR scan
- Planning
- MR scan
- Irradiation

MR scan immediately before start application (T2 TSE sagital, transversal, coronal) :

replacement of MR in week 4

- Tumor regression?
- Needles necessary?

BT1preAp

• MR scan

Application in MR room

After application:

If needles necessary:MR guided placement

- Application
- MR scan
 (MRplan)
- Planning
- MR scan
- Irradiation

BT1 preApp

BT1 nld

short sagital/transversal sequence (~2*1min)

•MR scan: T2 TSE sagital, transversal, coronal, DWI (~13 min)

Patient on MR trolley

Example 1 No special adapation

BT1plan

BT3plan

	total EQD2 in Gy								
	estimated deliverd	planned							
bladder	77.1	79.0							
rectum	57.6	55.4							
bowel	70.1	66.0							
	MA.								

Example 2 changing bladder filling

'wrong' (not empty) bladder filling at first MR

 \rightarrow lower bladder, higher bowel dose for first fraction

 \rightarrow Next fraction 100 cc bladder filling

 \rightarrow adaptive

BT3plan

BT3prerad

	total EQD2 in Gy									
	estimated delivered	planned								
bladder	79.9	80.0								
rectum	52.8	51.8								
bowel	69.5	75.0								

See, manipulate, adapt dose!

Controlling total dose, using spreadsheet

α/β target	10	Brachy								External Beam	elec SIB	Node bs
α/β OAR	3	fysische d	osis in cGy	1		EQD2 Gy					cGy	cGy
		BT1	BT2	BT3	BT4	BT1	BT2	BT3	BT4	nr fractions	25	
Date		10-Mar-14	11-Mar-14	17-Mar-14	18-Mar-14					total dose electief	4500	
Case name		BTIplanning	,	BT3plan						fraction dose electief	180	
Plan name		optimized		optimized						total dose nodes	0	
Aim (referentie	a) dose	700	700	700	700					fraction dose nodes	0	
										EB+Brachy	1	
hr-cty-b										EQD2 Gy	1	
III-CLV-D	Volume(cm3)	22.4	22.4	16.3	16.3					Aim	1	
	D50	1198	1198	1147	1147	21.9	21.9	20.5	20.5	129.2	1	
	D90	784	784	755	755	11.7	11.7	11.0	11.0	89.6 >85 of 90	1	
	D98	658	658	657	657	9.1	9.1	9.1	9.1	80.6	1	
	V100 (%)	95.9	95.9	95.0	95.0						I	
gtv-b											I	
	volume (cm3)	0.3	0.3	0.6	0.6						1	
	D90% D98	765	765	1936	1936	11.3	11.3	47.4	47.4	161.5	I	
ir-ctv-b	090	712	712	1609	1609	10.2	10.2	35.0	35.0	134.5	I	
II-CLV-D	volume(cm3)	62.2	62.2	49.6	49.6						I	
	D90%	449	449	431	431	5.4	5.4	5.1	5.1	65.4 >70	I	
	D98	323	323	345	345	3.6	3.6	3.9	3.9	59.1	I	
OAR										Constraint		
bladder-b	ICRU	262	262	157	157	2.9	2.9	1.4	1.4	52.0	1	
	D0 1	843	242	527	537	10.2	10.3	0.0	0.0	99.7		

	Brachy	Brachy									EB+Brachy		
	fysische d	fysische dosis in cGy				EQD2 Gy				EQD2 Gy			
	BT1	BT2	BT3	BT4	BT1	BT2	BT3	BT4					
bowel-b D0.1	751	751	662	662	15.8	15.8	12.7	12.7		100.2			
D2	520	520	476	476	8.5	8.5	7.4	7.4		75.0	<75 of 70		
bowel-prera D2	587	354	416	387	10.4	4.6	6.0	5.3		69.5			

•Adaptive workflow, adaptation rectum/bladder filling

•better estimation delivered OAR dose

MR Imaging directly before HDR dose delivery: -results in a more accurate estimate of delivered dose

 helps identifying situations that ask for individual adaptations
 (e.g. rectal de-gassing)

ButMR safety training is essential

Thanks to UMCU Team

Ina Jurgenliemk-Schulz Judith Roesink Robbert Tersteeg Christel Nomden Petra Kroon -van Loon Rien Moerland Hans de Boer Marielle Phillipens Nico van den Berg

Katelijne van Vliet Rogier Schokker Many others

