In Memoriam of Bengt Bjarngard Small Field Dosimetry

Chester Reft University of Chicago Medical Center

Challenges in Small Field Dosimetry

Small field characteristics

- Lateral electronic equilibrium
- Source occlusion

Commercial detector issues

- Characteristics
- Active vs Passive
- Correction factors
- **Output factors**
- Field size effects
- Detector examples
- Corrections

Novel detectors

- Edge
- Redesigned diode

Dosimetry

✤ Absolute ★ Dose ✤ Relative ★ Depth Dose o [D(r,d)/D(r,dm)]★ TMR \star Profiles ★ Output, S_{cp} (total scatter factor) o [D(r)/D(ref)]

What is a Small Field?

Lack of charged particle equilibrium

- Dependent on the range of secondary electrons
- Photon energy
- Collimator setting that obstructs the source size
- Detector is comparable to the field size

Values of r_{LEE} for various beams calculated with the Monte Carlo method; r_{LEE} is the minimum beam radius to achieve complete lateral electron equilibrium in water.

Beam	TPR_{10}^{20}	%dd(10) _x	r _{LEE} (g/cm²)
⁶⁰ Co		57.8	0.6
6 MV	0.670	66.2	1.3
10 MV	0.732	73.5	1.7
15 MV	0.765	77.9	1.9
24 MV	0.805	83.0	2.1

Definition of Small Fields

CPE & Electron Range

- CPE, Charged Particle Equilibrium
- Electron range= d_{max} in forward direction
- Electron range in lateral direction
 - Nearly energy independent
 - Nearly equal to penumbra (8-10 mm)
- Field size needed for CPE
 - Lateral range

dmax

Radiation Measurements

- Charged particle equilibrium or electronic equilibrium
 - Range of secondary electrons
 - Medium (tissue, lung, bone)

Photon energy and spectrum

- Change in spectrum
 - Field size
 - Off axis points like beamlets in IMRT
- Changes μ_{en}/ρ and S/ρ
- Detector size
 - Volume
 - Signal to noise ratio

Parameters Characterizing Radiation Detectors

- Energy dependence
- Dose response
- Accuracy and precision
- Sensitivity
- Stability
- Fading
- Spatial resolution Extra cameral signal
- Traceability

Dosimetric Variation with Detectors

Summary of small field output factor (S_{cp}) measurements with different passive detectors

Detector	Energy							
	6 MV				18 MV			
	.5x.5	1x1	2x2	3x3	.5x.5	1x1	2x2	3x3
DOT- micro	0.54	0.73	0.84	0.88	0.31	0.56	0.79	0.88
TLD	0.48	0.73	0.83	0.87	0.29	0.58	0.78	0.88
MOSFET	0.57	0.76	0.83	0.87	0.41	0.62	0.80	0.87

1 mm diameter - Dot-micro uncertainty: (+/-) 4% 3mm x 3mm - TLD uncertainty: (+/-) 2% MOSFET uncertainty: (+/-) 3%

Detector characteristic to consider in small field dosimetry

1. Spatial resolution – output measurements & scans

- 2. Dimensions
- 3. Sensitivity signal/noise
- 4. Density
- **5. Angular dependence**
- 6. Energy dependence
- 7. Water-equivalence
- 8. Dose linearity or known dose dependence

Active	Vendor	Туре	Sensitive Area (mm ²)	Detector thickness (mm)	Density (g/cm ³)	Water- proof
Ion	PTW	Pin-point 3104	5.0	0.6	1.19	Yes
chamber		3105	14	0.6	same	
	PTW	Markus 23343	23	2.0	0.92	Yes
		Advanced Markus	20	1.0	same	
	Exradin	MicroChamber	6.0	2.4	1.10	Yes
		A16				
	Exradin	MicroChamber	2	1.0	same	Yes
		T14				
	РТЖ	microLion (LIC) ¹	4.9	0.35	≈ 0.6 7	
Solid	Scanditronix	Electron	3.14	≈0.06	2.33	Yes
State	Diode	Stereo	0.6	same	same	Yes
	Dioue	Shielded [#]	3.14	same	same	Yes
	Sun Nuclear	Edge	0.64	same	same	Yes
	Diode					
	РТЖ	Diamond	≈ 7.1	0.26	3.5	Yes

	Vendor	Туре	Sensitive Area (mm²)	Detector Thickness (mm)	Density (mm ³)	Water- proof
Passive	TLD	Microcubes	1.0	1.0	2.64	No
	Thermo-	Ribbons	10.1	0.89-0.15	Same	No
	Fisher	Rods	1.0	1.0	Same	No
	Asahi techno glass Corp	RPL GRD ²	0.28	1.5	2.61	No
	Landauer	OSL(Dots) ³	0.78	0.2	3.97	Yes
	Film Kodak	Radiographic EDW	Limited by readout	0.2	1.34	No
	International Speciality Product	Radiochromic		0.23	1.34	Yes
	3 D Dosimeters (MGS	Gel-dosimeters (polymer/ radiochromic) ⁴	0.25-1mm Limited by readout	0.25-1mm Limited by readout	1.02	NA
	Research)	Radiochromic plastic Presage ⁴			1.05-1.067	NA

Output Factor = OF

OF = $D(d_0,r) / D(d_0,r_0) = [M(d_0,r_0)/M(d_0,r_0)] L/\rho(w,det)_{r,r_0} CF$

d₀ = 5 or 10 cm r₀ = 10x10 or 5x5 cm²

> For field sizes > $3x3 \text{ cm}^2$: CF = 1.00 & $(L/\rho)^{wat}_{det}(r,r_o) = 1.00$

The field factor defined as

Conventionally referred as field output factor

Converts absorbed dose to water (D_w) per MU at a reference point in a phantom for the machine-specific reference field (f_{msr}) of beam quality Q_{msr} , to that of the clinical field of interest (f_{clin}) of beam quality Q_{clin}

Field size dependent sensitivity

Definition of k^{fcl}_{Qcl} Defined in IAEA/AAPM (ionization chamber)

k_Q varies with Field Size and Depth

k_{Q} is related to $k_{Q_{msr},Q}^{f_{msr},f_{ref}}$

Kawachi et al, Med Phys, 35, 4591-4598, 2008

Kawachi et al, Med Phys, 35, 4591-4598, 2008

S_c =collimator factor S_p = phantom scatter S_{cp} = total scatter factor

A practical and theoretical definition of very small field size for radiotherapy output factors P.H. Charles et al.

Medical Physics, Vol. 41, No. 4, April 2014

A practical and theoretical definition of very small field size for radiotherapy output factors P.H. Charles et al.

Medical Physics, Vol. 41, No. 4, April 2014

S_c = S_{cs}S_{occ} S_c = total collimator scatter S_{occ} = source occlusion S_{cs} = collimator scatter

Westermark, M., Arndt, J., Nilsson, B., and Brahme, A. PMB 45 (2000) Comparative dosimetry in narrow high-energy photon beams

Dose rate dependence for various detectors for 6 MV irradiations – data normalized to Farmer chamber

Westermark, M., Arndt, J., Nilsson, B., and Brahme, A. PMB 45 (2000)

691

MC calculations of the field size dependence of the output factor for a diamond detector for 6 and 10 MV

M. Pimpinella et al. Metrologia 49 (2012) S207-210

Schematic diagram of the SCD dosimeter showing longitudinal cross-section (left) and details of connections (right)

TABLE II. Calculated volume-averaging correction factors [1/Faverage in Eq. (3)] for each detector.

Detector	5-mm cone diameter	7.5-mm cone diameter	10-mm cone diameter
0.5-mm PSD	1.003	1.001	1.000
1.0-mm PSD	1.011	1.002	1.001
PTW 60008	1.014	1.003	1.001
PTW 60012	1.014	1.003	1.001
MicroLion chamber	1.068	1.016	1.007
SFD diode	1.004	1.001	1.000

$$F_{\text{average}} = \frac{\int_0^{2\pi} \int_0^{d/2} D(r,\theta) r dr d\theta}{\pi d^2/4}.$$
 (3)

Morin, J., Beliveau-Nadeau, D., Chung, E., Seuntjens, J., Theriault, D., Archambault, L., Bedder, S. and Beaulieu, L.Med. Phys. 40 (2013)

Azangwe et al., Detector specific correction factors for small radiotherapy fields, Med. Phys. 41 (2014) 072103-1

Azangwe et al., Detector specific correction factors for small radiotherapy fields, Med. Phys. 41 (2014) 072103-1

Morin, J., Beliveau-Nadeau, D., Chung, E., Seuntjens, J., Theriault, D., Archambault, L., Bedder, S. and Beaulieu, L.Med. Phys. 40 (2013) TABLE III. Correction factors $k_{Q_{clip},Q_{msr}}^{fclin,fmsr}$ for the PTW 60008 diode, the PTW 60012 diode, the SFD, and the microlion obtained using the 0.5-mm PSD as a reference dosimeter. The reference detector was corrected for the volume-averaging effect by using the calculated correction factors (Table II).

Detectors	Collimator diameter (mm)	Experimental correction factors	Literature	Difference (%)
PTW 60008 diode	5	0.950	0.944 (Ref. 36), 0.945 (Ref. 38)	-0.6, -0.5
	7.5	0.942	0.951 (Ref. 36), 0.960 (Ref. 38)	0.9, 1.8
	10	0.959	0.965 (Ref. 36), 0.974 (Ref. 38)	0.6, 1.5
PTW 60012 diode	5	0.963	0.957 (Ref. 5), 0.963 (Ref. 38)	-0.6,0
	7.5	0.971	0.967 (Ref. 5), 0.975 (Ref. 38)	-0.4, 0.4
	10	0.985	0.978 (Ref. 5), 0.983 (Ref. 38)	-0.7, -0.2
SFD	5	0.957	0.952 (Ref. 8)	-0.5
	7.5	0.980	0.976 (Ref. 8)	-0.4
	10	0.994	_	-
MicroLion chamber	5	1.020	1.025 (Ref. 38)	0.5
	7.5	0.984	0.998 (Ref. 38)	1.4
	10	0.986	0.995 (Ref. 38)	0.9

Morin, J., Beliveau-Nadeau, D., Chung, E., Seuntjens, J., Theriault, D., Archambault, L., Bedder, S. and Beaulieu, L.Med. Phys. 40 (2013)

Westermark, M., Arndt, J., Nilsson, B., and Brahme, A.PMB 45 (2000)

What about passive detectors?

Difference between MC and measurements

TABLE V. Detector correction factors $(p_{fl})_{Q_{int}}^{Q_{clin}}(p_{spec})_{Q_{int}}^{Q_{clin}}$. Factors shown are ratios of detector ratios relative to the dose ratios determined to measurement for each field size $(\frac{D_{w,Q_{clin}}^{f_{clin}}}{D_{w,Q_{int}}^{f_{clin}}})/(\frac{M_{Q_{clin}}^{f_{clin}}}{M_{Q_{int}}^{f_{clin}}} \times (p_{vol})_{Q_{int}}^{Q_{clin}}).$							
FS [cm]	0.6	0.9	1.2	1.8	2.4	3.0	4.2
TLD chips	1.000		1.003	1.008	1.004	1.000	1.005
TLD micro-cubes	★0.998		1.000	1.001	1.009	1.000	1.001
IBA SFD diode	★ 0.995		0.998	1.002	1.006	1.000	0.990
IBA PFD diode	0.936		0.962	0.985	0.999	1.000	1.000
IBA EFD diode	0.961		0.983	0.992	1.002	1.000	0.997
PTW 60003Diamond	0.995		0.983	0.992	1.002	1.000	0.996
(Sensitive area $\sim 15 \text{ mm}^2$)							
PTW 60019 microDiamond	0.961		0.980	0.990	1.001	1.000	0.999
RPLD (GDM-302M)				0.993	0.998	1.000	0.994
Al ₂ O ₃ :C	0.980	0.982	0.985	0.991	0.999	1.000	
Scintillator 1	1.022	1.009	1.000	0.996	1.001	1.000	
Scintillator 2	1.028	1.015	1.006	1.000	1.004	1.000	
PTW 31018microLion	★0.970		0.980	0.990	1.000	1.000	0.999
IBA CC01	1.000		0.993	0.993	1.000	1.000	0.997
IBA CC04	1.096		1.007	0.998	1.003	1.000	0.997
IBA CC13b			1.033	1.008	1.005	1.000	0.996
Wellhöfer IC10 ^b			1.030	1.005	1.005	1.000	0.996
PTW 31014 PinPoint	1.034		1.007	1.002	1.000	1.000	0.998
PTW 31016 PinPoint 3D	1.078		1.013	1.000	1.001	1.000	0.998
PTW 31010 Semiflex ^b			1.027	1.002	1.004	1.000	0.996
PTW 31013 Semiflex ^{a,b}					1.013	1.000	0.992

Azangwe et al., Detector specific correction factors for small radiotherapy fields, Med. Phys. 41 (2014) 072103-1

Corrections for Cerenkov Radiation

- **1. Background fiber subtraction**
- 2. Simple filter to separate signals
- 3. Chromatic removal

Spectral Method for correcting for Cerenkov light

- Irradiation by a known dose
- Vary the amount optical fiber

Fiber in maximum position

Guillot M, Gingras L, Archambault L, Beddar S, Beaulieu L. Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov light-dominated situations. *Med Phys* 38: 2140–2150, 2011.

Custom in-air calibration phantom for the W1 scintillator. The pattern on the vendor-supplied calibration phantom was transferred to a piece of Styrofoam and traced out with a drill bit.

A Farmer ionization chamber which is known to have little instantaneous dose rate dependence was used as reference. For both detectors, the output was normalized to that of 100 cm SDD.

Scatter factors (Scp) for the 6X photon beam measured with the W1 scintillator, RK ionization chamber (RK) and electron diode

Scatter factors (Scp) for the 6XFFF photon beam measured with the W1 scintillator, RK ionization chamber (RK) and electron diode.

EDGE Detector Specifications

Active detection area (mm):	0.8 x 0.8
Diode die location (mm):	0.3 from top 4.7 from end 2.7 from side Location is indicated by a target on top of housing
Water depth equivalent (mm):	0.5
Housing wall thickness (mm):	0.13, brass
External dimensions (mm):	3.8 x 5.5 x 38
Sensitivity (nC/Gy):	32.0
Impedance (Mohm):	>200 at 10mV reverse bias
Output polarity:	Negative
Cable:	3.4mm dia. x 1.8m long, triax
Cable connector:	BNC or TNC triax, or adapters upon request

Evaluation of the EDGE Detector in Small-field Dosimetry

Hun-Joo Shin, Myong-Ho Kim and Ihl-Bohng Choi

Journal of the Korean Physical Society, Vol. 63, No. 1, July 2013, pp. 128 \sim 134

Field Sizes		D_{max} (r	nm)	
(mm^2)	EDGE	Diode	A16	MC
5×5	8.5 🖈	7.5	10.5	9.0 ★
10×10	12.0	9.5	13.0	13.0
15×15	13.0	10.0	13.5	13.0
20×20	13.5	10.0	14.0	13.0
30×30	12.5	10.5	14.0	13.0
50×50	14.0	10.0	14.0	15.0
98×98	13.5	10.0	14.0	14.0
average	12.4 ★	9.6	13.3	$12.9 \star$
min	8.5	7.5	10.5	9.0
max	14.0	10.5	14.0	15.0
median	13.0	10.0	14.0	13.0

Measured relative output factors for 6 MV photons for various field sizes for the Edge, diode, and A16 detectors

Relative sensitivity of diode increase with decreasing field size

Include a perturbation to compensate for over-response

Redesign diode by including an air gap \rightarrow independent of field size

Figure 1. Schematic of the placement of the air gap proximal to the diode detector. The grey represents the body of the detector, the dotted area is the silicon chip, and the white is the air gap. From left to right are schematics of the PTW60017 diode, PTW60016 diode and the unenclosed silicon chip respectively. The geometry of both the air gap and the detector is cylindrical in the perpendicular to beam direction. The diagram is not to scale.

> Monte Carlo-based diode design for correction-less small field dosimetry

> > P H Charles¹, S B Crowe¹, T Kairn^{1,2}, R T Knight², B Hill², J Kenny^{3,4}, C M Langton¹ and J V Trapp¹

Phys. Med. Biol. 58 (2013) 4501-4512

Table 2. $k_{Q_{chn},Q_{max}}^{f_{chn},f_{max}}$ for the three diodes simulated in this study as a function of square field size. These values are normalized to the field size of 50 mm. Shown is the unmodified detector design (without the air gap) as well as the modified detector design which includes the air gap. Note that the Monte Carlo statistical uncertainty in each value is approximately 0.5%.

	PTW 60	PTW 60016		PTW 60017		Unenclosed silicon chip	
Field size (mm)	No air	Air	No air	Air	No air	Air	
5	0.900	0.995	0.922	1.001	0.975	1.004	
6	0.911	0.997	0.938	1.004	0.985	1.004	
7	0.921	0.999	0.944	1.000	0.984	1.000	
8	0.931	1.005	0.957	1.001	0.995	0.999	
9	0.945	1.004	0.966	0.997	0.989	1.003	
10	0.948	0.999	0.969	0.998	0.996	0.995	
12	0.966	1.000	0.983	0.995	0.995	0.998	
18	0.991	0.995	0.997	1.000	1.004	1.005	
30	0.995	0.995	1.000	0.999	0.997	1.001	
50	1.000	1.000	1.000	1.000	1.000	1.000	

Monte Carlo-based diode design for correction-less small field dosimetry

P H Charles¹, S B Crowe¹, T Kairn^{1,2}, R T Knight², B Hill², J Kenny^{3,4}, C M Langton¹ and J V Trapp¹

Phys. Med. Biol. 58 (2013) 4501-4512

Conclusions

- **1.** Small field considerations
- Lateral electronic equilibrium
- Source Occulsion
- 2. Detector considerations
- Dimensions/Sensitive area
- Density
- Angular dependence
- Energy dependence
- 3. k_{Q} correction is field size and depth dependent

Conclusions Continued

- 4. No one ideal detector
- Use at least two different acceptable detectors
- Plastic scintillator may be an ideal small field detector?
- Unshielded diode good for fields > 1x1 cm²
- Stereotactic field diode good for fields \rightarrow 0.6x0.6 cm²
- Passive detectors such as TLDs and radiochromic film good for point dose measurements → 0.6x0.6 cm²

Thank you for your attention

Questions???