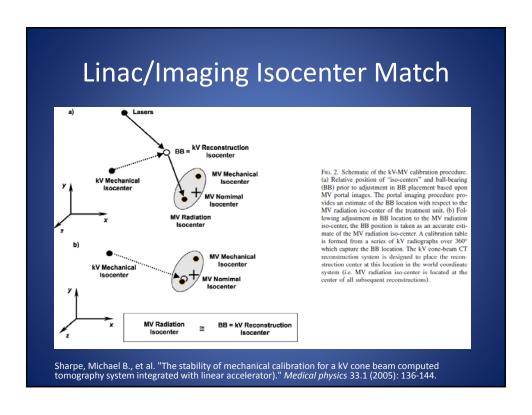

SRS Uncertainty: Linac and CyberKnife Uncertainties

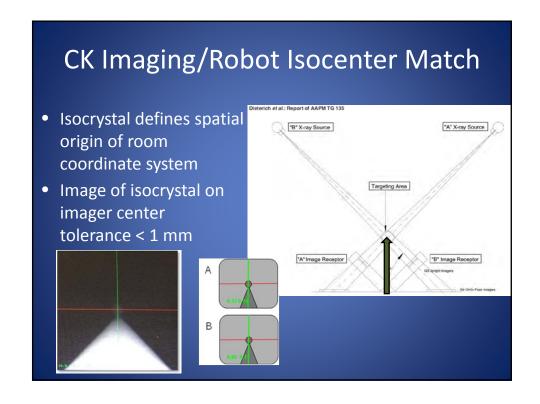
Sonja Dieterich, PhD

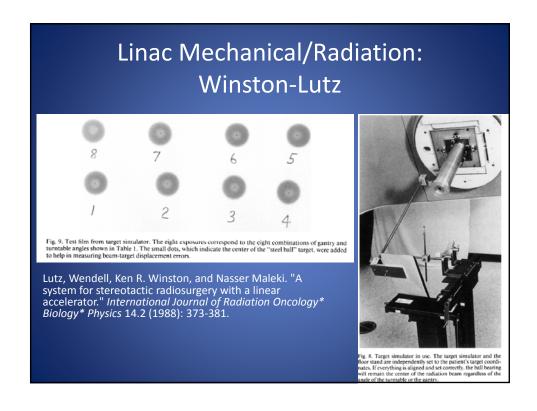
Linac/CyberKnife
Technological Uncertainties

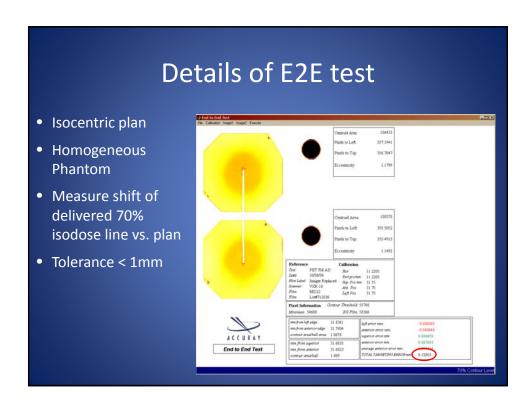
CK Mechanical Isocenter

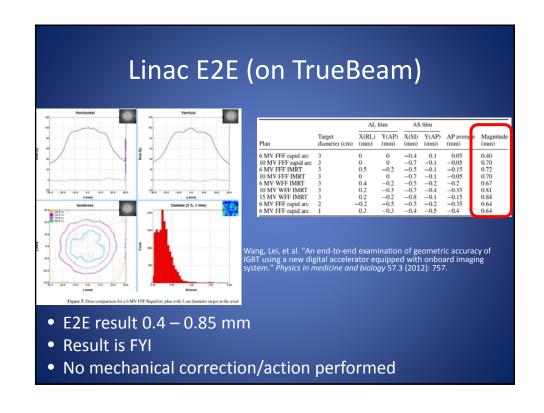
Fig. 3. The black isopost is mechanically mounted on the base frame of the imager system. The isocrystal at the tip of the post defines the coordinate system reference of the CyberKnife® system. The robot is going through the path calibration process (Sec. III B 1), with the beam laser scanning the isocrystal.




CK Mechanical Isocenter: Robot Pointing


- Linac CAX laser light intensity on isocrystal
- Robot runs automated grid pattern for highest light intensity on crystal
- Calibration followed by verification
- Acceptance <0.5mm average rms error per path


١.		Node		Calibrated Node			Error		Calculation						
Point	X	Y	Z	X	Y	Z	X	Y	Z	X*X	Y*Y	Z*Z	E*E	E	
	1	161.42	522.36	584.02	161.63	522.49	583.85	0.012	0.099	0.085	0.0001	0.0098	0.0072	0.0172	0.1310
	2	247.21	400.00	647.21	247.24	399.86	647.28	0.017	0.093	0.064	0.0003	0.0086	0.0041	0.0130	0.1142
-	3	82.48	412.78	680.30	82.26	412.52	680.48	0.036	0.084	0.055	0.0013	0.0071	0.0030	0.0114	0.1067
•	4	322.84	261.18	683.78	322.91	260.75	683.91	0.021	0.104	0.049	0.0004	0.0108	0.0024	0.0137	0.1169
-	5	164.96	279.32	731.28	165.05	278.97	731.39	0.021	0.104	0.044	0.0004	0.0108	0.0019	0.0132	0.1149
4	6	462.95	215.74	615.74	462.85	215.17	616.02	0.023	0.060	0.038	0.0005	0.0036	0.0014	0.0056	0.0747
	7	247.21	133.33	749.07	247.37	132.95	749.08	0.017	0.091	0.022	0.0003	0.0083	0.0005	0.0091	0.0952



CK E2E: The Δ -man Parameter

- E2E for all robot paths for each tracking algorithm (cranial, spine, ...)
- Determine systematic shift of E2E
- Result is applied as *global* correction
- Repeat until (nominally) <0.95 mm
- In clinical practice: E2E ~0.6 mm
- Adjusts for global systematic mechanical errors

- DET.TA MAN

DELTA MANIPULATOR VECTOR (X,Y,Z) IN MM

#km 2009-12-16 16:46:37 DELTA_MAN_VECTOR_FIXED_MMSTRING
DELTA_MAN_VECTOR_FIXED_MM STRING

DELTA_MAN_VECTOR_FIXED_MM STF
DELTA_MAN_VECTOR_IRIS_MM STF

0.8 0.1 0.9 1 0.1 1.2 0.9 0.3 0.7

What is the tolerance of the CyberKnife Isocrystal to Imager Center?

<mark>20%</mark> 1. 0.5 mm

20% 2. 1 mm

20% 3. 2 mm

20% 4. 1 pixel

^{20%} 5. 2 pixels

10

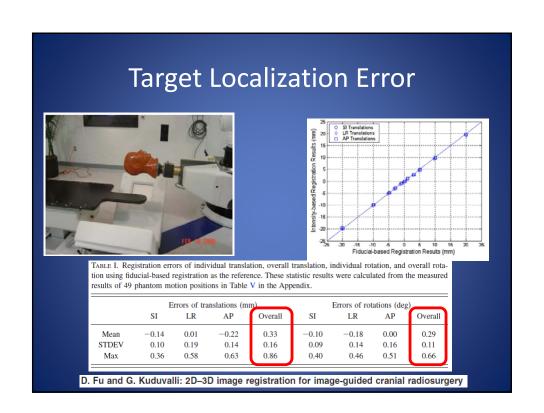
What is the tolerance of the CyberKnife Isocrystal to Imager Center?

Feedback:

The image of the isocrystal should be within 1 mm of the isocenter.

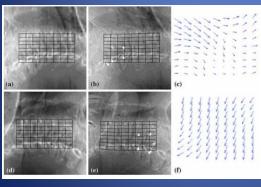
Slide Location:

Mechanical: Imaging/Robot Isocenter Match (#11)


Reference:

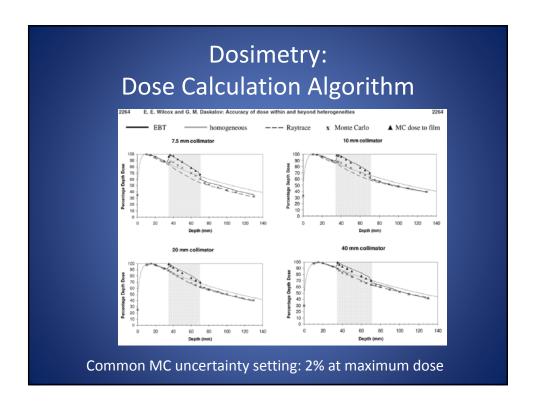
- 1) AAPM TG-135
- 2) CK Physics User Guide

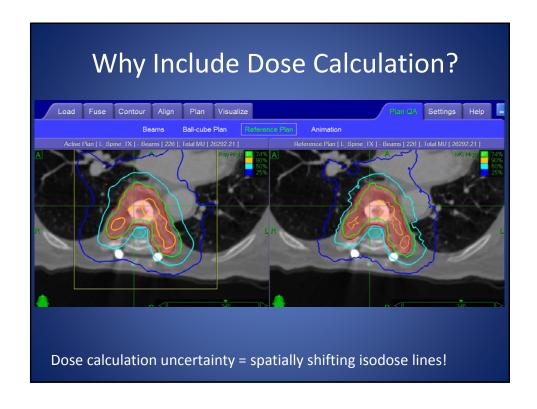
Uncertainties Common to All SRS Delivery Systems


Imaging Algorithm Uncertainty

- 1. <u>Target Localization Error</u>: error extracting target position
- 2. <u>Target registration error</u>: mean distance between image data and real patient after registration
- 3. <u>Target Positioning error</u>: Mismatch between intended position and actual position
- Methodology of Measuring is the same for all algorithms

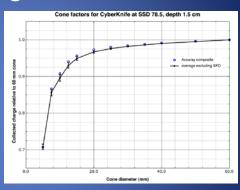
- Testing against a "gold standard"
 - E.g. track with fiducials, then edit them out and track on skeletal features
 - Fu, D., et al. "3D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery." Int J CARS 1.Suppl 1 (2006): 198-200.


Patient no	Spine level	Target 1	Target 2	Target 3	Target 4	Mean
1	Cervical	0.55	0.96	0.36	0.50	0.59
2	Cervical	0.61	0.34	0.77	0.21	0.48
3	Thoracic	0.49	0.32	0.42	0.39	0.41
4	Thoracic	0.68	0.60	0.92	0.70	0.73
5	Lumbar	0.24	0.24	0.60	0.63	0.43
6	Lumbar	0.46	0.24	0.37	0.48	0.39


Target Positioning Error

- Depends on how you adjust for patient position
- With couch:
 - couch motion accuracy
 - Measure using realistic patient weight!
- With delivery system (CK, VERO, Linac):
 - Robot pointing accuracy
 - Gimbal rotation accuracy
 - MLC shift accuracy

What is the Target Registration Error? 1. Error extracting target position 20% 2. Mean distance between image data and re 20% patient after registration 20% 3. Mismatch between intended and actual 20% position 4. Error caused by choosing incorrect fusion algorithm 5. Uncertainty in couch movement


What is the Target Registration Error? Feedback: Mean distance between image data and real patient after registration Slide Location: Imaging Algorithm Uncertainty Reference: Uncertainties in External Beam Radiotherapy, Chapter 14 Image Guidance to Reduce Setup error

Dosimetry: Commissioning Beam Data

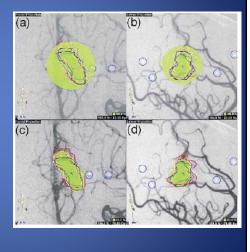
- All measured data comes with error bars
- TG-106 states inter-user and equipment repeatability should be <1%
- CK needs 3 (4) sets of data: output factor, TPR, and profiles. (In-air OF data for MC)
- Effects of combined beam data error, processing artifacts, etc. challenging to assess
- Assumption: 1% error each for unconnected data sets

S. Dieterich and G. W. Sherouse: Comparison of seven commercial dosimetry diodes for SRS

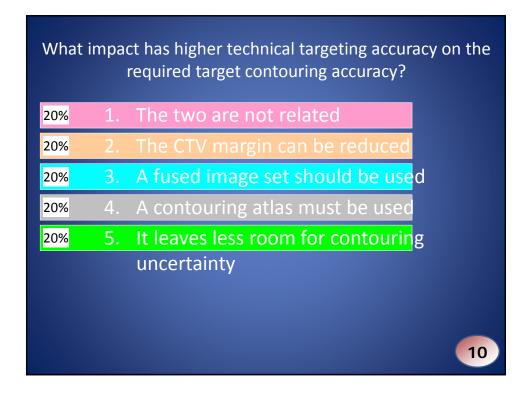
I do not know how to express this as spatial uncertainty

Let's take a step back and summarize what we have learned so far

Qualitative Accuracy Comparison of SRS/SBRT								
Linac	GK	СК						
Mechanical	Simpler than linac	Similar to linac						
Commissioning Data	Simpler than linac	Similar to linac						
Patient Positioning	Similar: frame	Similar: IGRT						
Target localization	Similar: frame	Similar: IGRT						
Dose calculation	Similar	similar						
Biological model	Same							
Target Definition	Sam							
3D imaging (in-beam imaging)	TBD (CBCT?)	Depends on 2D-3D imaging frequency						


Major Contributors to Uncertainty								
Туре	Uncertainty	Linac	СК	Туре				
Mechanical	Mechanical Isocenter	Star shots	Robot pointing	В				
	Collimator	MLC starshot, picket fence, etc	Film/Large chamber	A/B				
	Imaging Isocenter	Phantom	Isocrystal on imager	В				
	Imaging algorithm	?	Anthropomorphic phantom	В?				
Dosimetry	Beam data		Vater tank setup, kQ, detector/beam noise, ata processing, detetcor correction factors					
	Dose calculation algorithm	Algorithm uncertainty	MC uncertainty	А				
Planning(Geneser lecture)	Contouring	Similar for both machine	В					
Treatment	Residual patient motion	Similar for both machine	A/B					

Quantitative Accuracy Comparison: It's Complicated ...


- While Linac SRS accuracy contributing factors are generally similar to CK ...
- ...they combine differently.
- Why?
 - Delta-man concept on CK to determine & adjust systematic mechanical/imaging errors
 - Winston-Lutz vs. E2E concept
 - Intra-fraction imaging & position correction:
 - clinical on CK,
 - under development on linac
- My Dream: measure uncertainty with same test procedure on all three SRS/SBRT modalities

Higher Accuracy Means Less Room for Uncertainty

- a) Isocentric, 1 cone
- b) Isocentric, 1 cone coverage 96.8%±4%
- c) Dynamic Conf. Arc
- d) Dynamic Conf. Arc coverage 78%±4.4%

Interobserver variation of brain AVMs on DSA ● D. R. Buis et al.

What impact has higher technical targeting accuracy on the required target contouring accuracy?

Feedback:

The CTV margin depends on the extent of the microscopic disease. A higher technical accuracy means there is more conformality to the tumor contour. Therefore, the tight coverage leaves less room for contouring uncertainties. Using a contouring atlas may help in accurately contouring organs at risk.

Slide Location:

Higher Accuracy means less room for uncertainty (#41)

Reference:

Buis, Dennis R., et al. "Stereotactic radiosurgery for brain AVMs: role of interobserver variation in target definition on digital subtraction angiography." *International Journal of Radiation Oncology* Biology* Physics* 62.1 (2005): 246-252.

Conclusion

- 1. Dedicated Radiosurgery machines can delivery dose very accurately to homogeneous phantoms
- 2. Treatment Planning systems are getting much more accurate
 - In-vivo studies of dose calculation accuracy or anthropomorphic phantom DQA sparse in SRS/SBRT
 - DQA methods have technical limits measuring to accuracy better than 3%/1mm
- 3. Uncertainties in Radiation Biology, imaging disease, image registration & contouring are now large compared to mechanical & dosimetry uncertainty