Image Fusion, Contouring, and Margins in SRS

Sarah Geneser, Ph.D. Department of Radiation Oncology University of California, San Francisco

Overview

Review SRS uncertainties due to:

- image registration
- contouring accuracy
- contouring variability

Assess levels of uncertainty and greatest contributors to overall uncertainty

Discuss appropriate PTV margins to account for uncertainties in SRS

Registration Accuracy

Registration Accuracy

Accuracy depends on registration method:

- Local "box"-based rigid registrations can produce higher accuracy than global rigid registrations
- -ROIs should be in close proximity target

Registration Accuracy

- Site-dependent:
 - Registration of spinal sites is less straightforward and has lower accuracy
 - Deformable image registration is tempting for spine registrations but the associated uncertainties are too high for use in SRS

Rigid vs. Deformable Registration

Accuracy depends on registration method:

- Rigid registration is more accurate than deformable registration
 - rigid: ~1-2 mm uncertainty* deformable: ~5-7 mm uncertainty**

*Benchmark Test of Cranial CT/MR Registration • *IJROBP* • Kenneth *et al.* • 2010 **Need for application-based adaptation of DIR • *Med. Phys.* • Kirby *et al.* • 2013 **Performance of DIR in low contrast regions • *Med. Phys.* • Supple *et al.* • 2013

Registration Workflow Comparison

Simulation and planning images	Gamma Knife	Linac-based SRS
Planning	MRI*	СТ
Contouring	MRI*	MRI or PET/CT
Fusion Type	single-modality rigid registration	multimodal rigid registration

Modality

- Modality dependent:
 - Multi-modal registrations are typically less accurate than unimodal registrations, (especially for deformable registration)
 - Registering MRIs of differing sequences is not truly unimodal because of the difference in enhancement for certain regions
 - Different volumes may have different slice thicknesses

Co-Registration Accuracy

Visual evaluation of registration accuracy can be difficult.

Co-Registration Accuracy

Patient number	$\Delta Z \text{ (mm)}$ (mean±SD)	$\Delta P (mm)$ (mean ± SD)	$\Delta S (mm)$ (mean±SD)	ΔS_{max} (mm)	max error:
1	0.37+0.78	1.17+0.89	1.54±1.05	2.50	3.7 mm
2	0.11±0.33	0.88±0.52	0.96 ± 0.58	1.41	
3	0.64±1.27	1.15 ± 1.15	1.92 ± 1.13	3.62	
6	0.36±0.41	1.70 ± 0.86	1.89 ± 0.75	2.72	
7	0.39 ± 1.15	0.81±0.79	1.54 ± 1.26	3.48	average
	ver five anato ident markers:				error:
	 error in transa aximum discrepant. 				

Benchmark Test of Cranial CT/MR Registration • IJROBP • Kenneth et al. • 2010

MR to CT Registration Errors • Med. Phys. • Sudhyadhom et al. • 2014

Frame-Based Registration

Contouring Accuracy

Contouring Accuracy

Contouring accuracy is affected by:

- -Modality
- -Spatial resolution
- Signal to noise ratio (SNR)
- -MR field strength
- Planning image timing
- -Contrast injection timing
- Additional factors: slice thickness, image artifacts, motion blur, spatial distortion

Modality

Spatial Resolution & SNR

- Spatial resolution and SNR also affect imaging accuracy
 - Slice thickness contributes substantially to contouring and image fusion accuracy
 - SNR is greater concern for MRI
- In most cases, visual inspection is employed to determine appropriate resolution and SNR levels

Slice Thickness

- Slice thickness affects image registration accuracy:
 - Thinner slices improve accuracy (improves interpolated image accuracy)
 - Typical planning CT and MRI slice thicknesses range from 1 mm to 3mm

MRI field strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
but 1.5 T is sufficient (small effects on contours)Image: Strength effects spatial resolution and SNR,
spatial resolution and SNR,<br/

Additional Factors

- Slice thickness
- Image artifacts (e.g. metal artifacts)
- Motion blur
- Spatial distortion (especially MRI)

Contour Variation

Contour Variation

What margin for SRS?

- Margins should be sufficient to account for treatment uncertainties and guarantee target coverage
- They must be balanced to minimize potential negative side effects resulting from increased normal tissue dose (more important for SRS)
- Some clinics choose not to include margin expansions (CTV = PTV)

Journal of the ICRU: Volumes • Volume 4 Number 1 • 2004

Margins – not your simple PTV

Margin recipes based on standard fractionation (van Herk 1999) are not appropriate for few fractions:

$$M = 2.5 \Sigma_{tot} + 0.7\sigma_{tot}$$

Several groups have adapted the van Herk recipe for hypofraction:

- Stroom and Heijmen (2003)
- Gordon and Siebers (2007)

ICRU Report 62 • van Herk et al. • 1999

Geometrical uncertainties, planning margins • *Rad & Onc* • Stroom *et al.* • 2002 PTV margins finite fractions & small systematic errors • *PMB* • Gordon *et al.* • 2007

Herschtal Margin for SBRT

- Adjusted van Herk formula as lower limit
- Developed method for estimating upper limit
- Model interpolates between limits
- Verified using MC simulation
- Specific to each clinic

Calculating margins for hypofractionated RT • PMB • Herschtal et al. • 2013

Summary

Summary

- Contours can vary substantially from physician to physician
 - Minimize by appropriate imaging choices (modality, MR field strength, etc.)
 - Generally not accounted for in PTV
- Contouring accuracy: small contribution to overall uncertainty (~1-2mm)
 - Minimized by imaging choices (slice thickness, reduction of image artifacts, etc.)
- Image registration: small contribution (~1-2mm)
 Rigid registration, manual vs. automatic

Which of the following SRS workflow choices is likely to contribute MOST to overall uncertainty?

- 10% 1. extend frame immobilization
- 19% 2. CTV contouring variability
- 33% 3. rigid image registration
- 24% 4. 3 mm MRI slice thickness
- 14% 5. 3 mm plan CT slice thickness

Which of the following SRS workflow choices is likely to contribute MOST to overall uncertainty?

1. Answer: CTV contouring variability

Refs: "Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging", *Radiotherapy & Oncology* 60 (2001), p. 49-59.

"Target delineation in post-operative radiotherapy of brain gliomas: Interobserver variability and impact of image registration of MR (pre-op) images on treatment planning CTs", *Radiotherapy and Oncology* 75 (2005), p. 217-223.

Which of the following is currently LEAST appropriate for SRS?

11%	1. mask immobilization	
4%	2. CBCT image guidance	
18%	3. contouring using PET-0	СТ
21%	4. deformable registration	
14%	5. planning on MRI	

Which of the following is currently LEAST appropriate for SRS?

- 1. Answer: deformable registration.
- 2. Rigid registration is sufficient for the majority of SRS cases. Moreover, the uncertainty associated with deformable registration (as high as 7 mm) is too high to warrant use in SRS.

Refs: "The need for application-based adaptation of deformable image registration", *Medical Physics* 40 (2012), p. 1-9.

Acknowledgements

UCSF:

Dilini Pinnadiwadge, Ph.D. Martina Descovich, Ph.D. Atchar Sudhyadhom, Ph.D. Jean Pouliot, Ph.D. Alexander Gottschalk, M.D. Zachary Seymour, M.D.

Sonja Dieterich, Ph.D. [UC Davis]

Thank you!

SF Medical Center