Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

Image Quality Review I: Basics and Image Quality

TH-A-16A-1 Thursday 7:30AM - 9:30AM Room: 16A

J. Anthony Seibert, PhD Department of Radiology UC Davis Medical Center Sacramento, California

Disclosures

- Trustee, American Board of Radiology
- Author, Essential Physics of Medical Imaging

Outline

- · Image quality and ROC analysis
- · Image quality fundamentals
 - Contrast resolution, noise, NPS
 - Spatial resolution, detail, MTF
 - Digital sampling and aliasing
 - Contrast detail analysis
- · Detector uniformity and flat-fielding
- Cone Beam CT issues
- QA QC resources

Image Quality

Technologist/Therapist:

Work with the patient and the instruments to produce the best possible images.

Medical Physicist:

Optimize image quality of each medical imaging procedure to maximize diagnostic performance

Radiologist/Radiation Oncologist:

Optimize image interpretation skills for the most accurate diagnosis/evaluation possible

maximize diagnostic performance

- sensitivity
- specificity

decision parameter

receiver operating characteristic (ROC) curve

In ROC analysis, which of the following is a measure of sensitivity?

28%	1.	TP/(TP+FP)
21%	2.	TP/(TP+FN)
17%	3.	FP/(FP+TN)
10%	4.	TN/(TN+FP)
24%	5.	TP/(TP+FP+TN+FN)

In ROC analysis, which of the following is a measure of sensitivity?

- 1. TP/(TP+FP) .. Positive Predictive Value
- 2. TP/(TP+FN).... Sensitivity
 - 3. FP/(FP+TN) ... False Positive Fraction
 - 4. TN/(TN+FP).... Specificity
 - 5. TP+TN/(TP+FP+TN+FN) ... Accuracy

Reference: Essential Physics of Medical Imaging, Bushberg, Seibert, Leidholdt, Boone, 3rd Ed. Lippincott Williams & Wilkens, 2012. Chapter 4, Image Quality

Image Quality

Contrast Resolution	_ contrast ●
	noise
Spatial Resolution	_ input functions
opatial Nesolution	digital sampling

Contrast / Detail

Image with no contrast

Image with contrast

Contrast

 subject contrast detector contrast digital contrast

bone contrast example

Subject Contrast

scattered radiation reduces subject contrast

Subject Contrast

contrast agents (obviously) affect contrast

digital subtraction angiography with iodine contrast agent in vessel

double contrast GI study

subject contrast

 detector contrast digital contrast

Detector contrast (screen film)

Detector contrast (screen film)

detector contrast is the derivative of the characteristic curve

Detector contrast (screen film)

Radiographic contrast (screen film)

 $OD_1 - OD_2$ = radiographic contrast

screen film radiography

Contrast

digital contrast

Detector contrast (digital)

Detector contrast (digital)

digital radiography

= contrast

digital manipulation of contrast contrast enhancement (post-acquisition) "window and leveling"

Bone (W=2000, L=300)

Lung (W=2000, L= -700)

same image: different window and level settings

Abdominal (W=400, L=80)

The *subject contrast* generated in a patient is most dependent on which acquisition parameter?

13%	1.	Generator waveform
13%	2.	kV
37%	3.	mAs
20%	4.	Focal spot
17%	5.	Collimation

The *subject contrast* generated in a patient is most dependent on which acquisition parameter?

1. Generator waveform

- 3. mAs
- 4. Focal spot
- 5. Collimation

Reference: Essential Physics of Medical Imaging, Bushberg, Seibert, Leidholdt, Boone, $3^{\rm rd}$ Ed. Lippincott Williams & Wilkens, 2012. Chapter 7, Radiography.

Image Quality

Contrast / Detail

Characterizing image noise

RMS noise (σ)

$$\sigma^2 = \frac{\sum_{i=0}^{N} \left(x_i - \overline{x}\right)^2}{N-1}$$

Noise sources:

Quantum n_q Electronic n_e Pattern n_p Anatomic n_a

Ideally, noise should always be quantum limited; the RMS noise also does not indicate noise correlation

$$\sigma = \sqrt{n_0 + n_0 + n_0 + n_0}$$

Overall noise dominated by quantum fluctuations over a defined range

What level of noise? ...depends on incident number of photons efficiency of detection, signal conversion, and #photons detected / unit volume

Example: variance for CT image reconstruction

w pixel dimensionh slice thicknessQ # photons

Contrast resolution is determined by contrast and noise

Contrast to Noise Ratio (CNR)

$$SNR = \frac{\bar{X}_{bg}}{\sigma_{bg}} \qquad CNR = \frac{(\bar{X}_S - \bar{X}_{bg})}{\sigma_{bg}}$$

$$\bar{x}_{bg} = \sigma_{bg}$$

$$\bar{x}_{s} = \sigma_{s}$$

Characterizing image noise

Noise Power Spectrum: NPS(f)

41

$$NPS(u,v) = \left(\frac{\Delta x \ \Delta y}{XY}\right) \left| \frac{1}{\hat{I}} \int_{-x/2}^{x/2} \int_{-x/2}^{x/2} [I(x,y) - \hat{I}] e^{-j2\pi(ux+vy)} dx \ dy \right|^2$$

Fourier Transform

Characterizing image noise - noise texture

Noise Power Spectrum: NPS(f)

$$NPS(u,v) = \left(\frac{\Delta x \ \Delta y}{XY}\right) \left| \frac{1}{\hat{1}} \int_{-x/2}^{x/2} \int_{-y/2}^{y/2} [I(x,y) - \hat{I}] e^{-j2\pi(ux+vy)} dx \ dy \right|^2$$

Noise Power Spectrum: NPS(f)

A total of 1,000,000 photons/mm² are incident on a 100% efficient digital detector with pixels of 0.1 mm x 0.1 mm. What is the estimated SNR?

10%	1.	10			
10%	2.	32			
30%	3.	100			
23%	4.	320			
27%	5.	1000)		

Hint: 0.1 mm x 0.1 mm = 0.01 mm²

A total of 1,000,000 photons/mm² are incident on a 100% efficient digital detector with pixels of 0.1 mm x 0.1 mm. What is the estimated SNR?

5. 1000

10^{6} / mm² x 10^{-2} mm² = 10^{4} ; $\sqrt{10^{4}}$ = 100

Reference: Essential Physics of Medical Imaging, Bushberg, Seibert, Leidholdt, Boone, 3rd Ed. Lippincott Williams & Wilkens, 2012. Chapter 4, Image Quality

Image Quality

Contrast Resolution		contrast
	l	noise
Spatial Resolution	\int	input functions
Spatial Resolution	ſ	digital sampling
Contrast / Detail		

object in

$$I(x, y) = \int_{x} \int_{y'} I'(x', y') \quad h(x - x', y - y') \quad dx' \quad dy'$$

The convolution integral

ШШ

Spatial Frequency cycle/mm, mm⁻¹ line pair / mm (lp/mm) 53

square wave

sine wave

Practical way for measuring the MTF of an imaging system

slit phantom

slit image

LSF(x)

Geometry Issues

≡ III 三川

豊 期

Image Quality

Contrast / Detail

affects resolution

have to sample at least twice per period

OK to over-sample

Nyquist Criterion

not OK to under-sample

aliasing

Nyquist Criterion

not OK to under-sample

With $F_n = 5$ cycles / mm ($\Delta = 0.100$ mm)

Typical measurement of resolution

Bar phantom analysis and determination of lp/mm

Where d is the del dimension ...

Image Quality

	120 100	SNR ∝√N
	80 -	
NR	60 -	contrast resolution
0	40 -	
	20 -	
	0 4	, , , , , , , , , , , , , , , , , , , ,
	C	2500 5000 7500 10000
		Signal (photons/mm^2)
	100	
	80	
	£ 60	spatial resolution
	HTM 40	
	20	
	0	0 1.0 2.0 3.0 4.0
		Spatial Frequency (cycles/mm)

the contrast detail curve

the contrast detail curve

the contrast detail curve

"Visibility" requires SNR of at least 3....

detail

mathematical approach to combining contrast & spatial resolution ?

contrast resolution - Noise Power Spectrum (NPS)

$$NPS(u,v) = \left(\frac{\Delta x \ \Delta y}{XY}\right) \left| \frac{1}{\hat{1}} \int_{-x/2}^{x/2} \int_{-y/2}^{y/2} [I(x,y) - \hat{1}] e^{-j2\pi(ux+vy)} dx \ dy \right|^2$$

how an imaging system "passes" noise

spatial resolution - Modulation Transfer Function (MTF)

$$MTF(f) = \frac{\int_{-\infty}^{\infty} LSF(x) e^{-2\pi i f x} dx}{\int_{-\infty}^{\infty} LSF(x) dx}$$

how an imaging system "passes" signal

DQE: Information recording & retrieval efficiency

A contrast-detail image is acquired
and processed (A). A second image is
acquired (B) with different acquisition
or processing parameters. What is the
likely cause for the change in the C-D
curves?

17%	1.	Image B is processed with a spatial blurring filter
23%	2.	Image B is processed with a spatial sharpening filter
23%	3.	Image B is acquired with more mAs
13%	4.	Image B is acquired with more filtration
23%	5.	Image B is unchanged.

A contrast-detail image is acquired and processed (A). A second image is acquired (B) with different acquisition or processing parameters. What is the likely cause for the change in the C-D curves?

Reference: Essential Physics of Medical Imaging, Bushberg, Seibert, Leidholdt, Boone, 3rd Ed. Lippincott Williams & Wilkens, 2012. Chapter 4.

- 1. Image B is processed with a spatial blurring filter
- 2. Image B is processed with a spatial sharpening filter
- 3. Image B is acquired with more mAs
- 4. Image B is acquired with more tube filtration
- 5. Image B is unchanged.

Detector Uniformity Issues

- 2-D flat-field correction
- Non-functioning components:
 Dead pixels in columns and/or rows
- Intensity variations:
 - Uneven phosphor coating
 - Optical coupling (vignetting, barrel distortion)
 - Converter sensitivity
- · Variation in offset and gain of sub-panels
- · Variation in black-level correction

Uncorrected flat-panel image

Uncorrected flat-panel image

Example "raw" image & flat-field

MITA Industry Definitions for Image Data States

CBCT issues

- Large area detector
- Geometric rotation accuracy
- Diverging radiation beam along z-axis
- X-ray scatter and beam uniformity
- HU accuracy and percent noise
- Cone beam reconstruction artifacts
- Radiation dose measurements

An Integrated CT Image Quality / Dosimetry Phantom

CT image quality evaluation

QA and QC

- Quality assurance (QA)*: "The planned and systematic activities implemented in a quality system so that quality requirements for a product or service will be fulfilled."
- Quality control (QC)*: "The observation techniques and activities used to fulfill requirements for quality."

*The American Society for Quality

QC resources

- AAPM Task Group Reports
- ACR / AAPM / SIIM technical standards
- NCRP / ICRU Reports
- Accreditation program guidelines
- · Manufacturer's guidelines
- · Automated software evaluation with specificallydesigned phantoms and /or software

AAPM reports

Applications for Diagnostic

A	oplications for Diagnos	tic	Ap	plications for CT	
•	#14: X-ray generators	(1985)	•	#39: CT testing QC	(1993)
•	#25: X-ray survey	(1988)	•	#96: CT dosimetry	(2008)
•	#74: General x-ray QC	(2002)	•	#111: Future of CT dose	(2010)
•	#93: CR testing & QC	(2006)	•	#204: SSDE	(2011)
•	#116: DR Exposure	(2009)	•	#200: CT Phantoms	(IP)
•	#150: DR detector	(IP)	•	#220: CT Patient size	(IP)
•	#151: DR clinical QC	(IP)	•	#233: CT Perf Evaluation	n (IP)
			•	#246: CT Patient Dose	(IP)

Applications for therapy IGRT

- #104: kV imaging (2009)
- #142: Med Accel QC (2009)
- #179: IGRT systems (2012)

ACR–AAPM Technical Std for Perf Monitoring of IGRT (2014)

	QC Test	AAPM 179
	Safety system	Daily
Modes of acquisition Flat panel detector	IQ: Uniformity	Monthly / Semi-annual
	IQ: Image density	Optional monthly
 Projection Imaging 	IQ: Noise	Monthly / Semi-annual
- Cone beam CT	IQ: Contrast detail	Monthly / Semi-annual
	IQ: Resolution	Monthly / Semi-annual
	Geometry: isocenter	Daily
	Geometry: scaling	Monthly / Annually
	X-ray generator	Annual

AAPM Report 179

Which of the following QC tests is performed on a daily basis for a cone-beam CT scanner used for IGRT?

20%	1.	Image Uniformity
13%	2.	Spatial Resolution
27%	3.	Noise Distribution
27%	4.	Contrast Detail
13%	5.	Isocenter Verification

Which of the following QC tests is performed on a daily basis for a cone-beam CT scanner used for IGRT?

- 1. Image Uniformity
- 2. Spatial Resolution
- 3. Signal/Noise Ratio
- 4. Contrast Detail
- 5. Isocenter Accuracy

Reference: Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med. Phys. 39 (4), April 2012. Available at aapm.org/pubs/reports/RPT_179

Summary

- An understanding of basic image quality fundamentals is essential to performing QA and QC in a knowledgeable manner
- Increased use of imaging in radiation therapy requires medical physicists to engage in converting QA/QC "information" into *knowledge* through experiential efforts
- Both qualitative and quantitative QC tools are important in verifying system performance