

Data Analyzed

- Pooled clinical data from 118 studies
- Data with stages > T2 were excluded.
- Treatment doses were converted to isocenters, 80% prescription was assumed if unspecified.
- For the data with unknown portion of T1, 50% was assumed.

Models considered

1) LQ: $BED = D(1 + \frac{d}{\alpha/\beta})$ d: fraction dose; D: total dose

Guerrero and Carlone, Med. Phys. 37, 4173-81 (2010)

Model: MA-LQ

Fitting techniques of cell survival curves in high-dose region for use in stereotactic body radiation therapy F W McKenna and S Ahmad

Models Considered

Model	BED	parameters	тср
LQ	$D(1 + \frac{d}{\alpha/\beta})$	α, α/β	$e^{-K*e^{-\alpha*BED}}$
Universal Survival Curve	$\begin{cases} D\left(1+\frac{d}{a/\beta}\right), & d < d_T\\ \frac{1}{aD_0}(D-nD_q), & d \geq d_T \end{cases} (\beta = \frac{(1-aD_0)^2}{4D_0D_q}, d_T = \frac{2D_0}{1-aD_0}) \end{cases}$	α, D_0, D_q	$e^{-K*e^{-\alpha*BED}}$
LQ-L	$\begin{cases} D\left(1 + \frac{d}{\alpha/\beta}\right), & d < d_T \\ nd_T\left(1 + \frac{d_T}{\alpha/\beta}\right) + n\left(1 + 2\frac{d_T}{\alpha/\beta}\right)(d - d_T), d \ge d_T \end{cases}$	$\alpha, \alpha/\beta, d_T$	$e^{-K*e^{-lpha*BED}}$
MA-LQ	$D\left(1 + \frac{d}{\frac{\alpha}{\beta}(1 + \frac{\beta}{\gamma}D)}\right)$	α, β, γ	$e^{-K*e^{-\alpha*BED}}$
Regrowth	$D\left(1 + \frac{d}{\alpha/\beta}\right) = \frac{\gamma T}{a}, \frac{\gamma \sin 2}{T_{a}}, \frac{1}{2}$	$\alpha, \alpha/\beta$, T_{d}	$1 - \tfrac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{x^2}{2}} dx$

Regrowth mode: $t = \frac{K - K_{NR}}{\sigma_K}$, $K = K_0 e^{-\left[aB\left(1 + \frac{d}{ar_F}\right)^2 - \gamma T - (\gamma(\tau - T))^d\right]}$, T. elapsed Tx time, T_E doubling time, $\tau - T$: follow-up time

Data fitting

Local control rate:

$$LCR = e^{-K \cdot e^{-\alpha \cdot BRD}}$$
 $LCR = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{x^2}{2}} dx$

Least χ^2 method was used to fit the clinical LCR data

$$\chi^{2} = \sum_{i=1}^{n} \frac{[LCR_{i}^{data}(D_{i}, d_{i}, \tau_{i}) - LCR_{i}^{model}(D_{i}, d_{i}, \tau_{i})]^{2}}{\sigma_{i}^{2}}$$

The fitting considers goodness and sample size of each data point.

 $\sigma_i = LCR_i^{data} \sqrt{\frac{1 - LCR_i^{data}}{N_i}}$

Difference between T1 and T2

+ 3 year LCR v.s. portion of T1 in mixed data: T1 portion \uparrow , LCR \uparrow

Fit to data w/ T1&T2

- $LCR^{model} = f_{T_1} * LCR_{T_1}^{model} + f_{T_2} * LCR_{T_2}^{model}$, $f_{T_1}(f_{T_2})$: portion of T1 (T2) patient w/ $f_{T_1}+f_{T_2}=1$
- Two sets model parameters for T1 and T2
- Simultaneous fits to all data

Fits to T1 data

Fit with LQ, USC, MA-LQ, LQ-L, and regrowth models (para. ranges @CL=90%)

Fits to All data

Fit with LQ, USC, MALQ, LQ-L, and regrowth models (para. ranges @CL=90%)

Fits to data w/ T1&T2 mixed

• Simultaneous fit to all data w/ parameters for T1&T2 (BED in left panel calc. with w/ T1 paras for plotting)

Notice: $\alpha_{T_1} > \alpha_{T_2}, \alpha/\beta_{T_1} > \alpha/\beta_{T_2}, T_{d_{T_1}} < T_{d_{T_2}}$ (para. ranges @CL=90%)

Fits to data w/ T1&T2 mixed

Model Parameters from fitting

Model parameters @ 90% confidence level

Model	χ²/ndf						
	Fit to all data	α (Gγ ⁻¹)	α/β (Gy)	Td/Dq/Y	α (Gγ ⁻¹)	α/β (Gγ)	Td/D _o /Y
regrowth	3.7	0.24±0.02 [0.21,0.28]	27.3±2.0 [24.1,30.5]	Td=79±11 [61,97] days	0.173±0.014 [0.15,0.20]	19.43±0.81 [18.1, 20.8]	Td= 119±40 [53,185] days
LQ	5.3	0.44±0.01 [0.42,0.46]	24.2±0.9 [22.6,25.7]		0.112±0.016 [0.09,0.14]	15.4±0.9 [13.9,16.9]	
LQ-L	6.1	0.156±0.001 [0.15, 0.16]	22.9±0.5 [22.1,23.7]	dT=27.6±1.6 [24.9, 30.2] Gy	0.208±0.001 [0.21,0.21]	19.68±0.22 [19.3, 20.0]	dT=87.9±0.1 [87.6, 88.1] Gy
USC	5.4	0.370±0.011 [0.35, 0.39]	D ₀ =0.746±0.02 2 [0.71,0.78] Gy	D _q =11.3±0.8 [10.0, 12.6] Gy	0.283±0.017 [0.26, 0.31]	D ₀ =0.757±0.02 62 [0.71,0.80] Gy	D _q =14.3±0.5 [13.5, 15.2] Gy
MALQ	5.0	0.411±0.009 [0.40, 0.43]	$\beta = 39.0\pm15.8$ [13.1, 64.9] Gy	Y=0.454±0.024 [0.41,0.49] Gy ⁻¹	0.346±0.008 [0.33, 0.36]	$\beta = 30.6\pm31.7$ [-21.3, 82.5] Gy ²	Y=0.499±0.024 [0.46,0.54] Gy ¹

Model predictions Required prescription (physical dose) (Gy) predicted based on the models considered

(Regrowth: Tx time 7d for 3fx, 14d for 5fx)

Model	stage	2-year LCR= 95%		asymptotic (Plateau)		
		3 fx	5 fx	3 fx	5 fx	
Begrowth	T1	39.2 Gy	44.0 Gy	45.0 Gy	50.9 Gy	
Regrowth	T2	46.4 Gy	53.7 Gy	46.2 Gy	53.5 Gy	
10	T1	39.6 Gy	44.7 Gy			
ĽQ	T2	43.4 Gy	50.8 Gy			
1150	T1	39.5 Gy	44.6 Gy			
USC	T2	40.5 Gy	46.3 Gy			
101	T1	40.3 Gy	45.5 Gy			
LQ-L	T2	40.1 Gy	45.8 Gy			

More Models					
at J Radiation Oncol odeling Local Cor cereotactic Body F on-Small Cell Lun ollaborative Lung	Biol Phys, Vol. 84, No. 3, pp. e379–e384, 2012 trol After Hypofractionated kadiation Therapy for Stage I g Cancer: A Report From the Elekta Research Group				
tin Ohri, MD,* Maria Werne drew Hope, MD, ¹ Di Yan, I n-Jakob Sonke, PhD, ¹ Jeau	r-Wasik, MD, ⁺ Inga S, Grills, MD, ⁺ José Belderbos, MD, PhD, ⁺ Sc. ⁻ Larry L. Kestin, MD, ^I Matthlas Guckenberger, MD, ⁺ -Pierre Bissonette, PhD, ⁻ and Ying Xiao, PhD ⁻¹ Madical Physics, Vol. 30, No. 1, Japuapy 2012				
	A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair				
	Zhibin Huang ⁴⁰ Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834				
	Nina A. Mayr Department of Radiation Oncology, The Obio State University, Colombas, Ohio 43220				
	Simon S. Lo Department of Addition Oncology, University Hospitals Case Medical Conter, Case Western Reserve University, Circuitand, Okio 44100				
	Jian Z. Wang Department of Radiation Oncodings, The Ohio State University, Columbus, Ohio 43210				
	Guang Jia and William T. C. Yuh Department of Radiology, The Obio State University, Colambas, Obio 45210				
	Poberta Johnine Department of Radiation Oncology, East Carolina University, Greeneville, North Carolina, 27634				

Summary

- Regrowth model seems yielding better fitting to the data, fits yield large α/β for all models
- Models predict that the required physical doses are 39.2-41.0 (or 40.1 -46.4) Gy in 3 fractions in order to achieve a 2-year local control of 95% for T1 (or T2) lung cancer.