HEALING MANKIND ONE PATIENT AT A TIME

A Pre-

UCLA MEDICAL CENTER Main Entrance Valet Parking Meditation Garden

Neuropsychiatric Hospital

Resnick

RONALD REAGAN

UCLA Health

Radiation Oncology

David Geffen School of Medicine

PREDICTING TUMOR CONTROL FROM LUNG SBRT/SABR: A CLINICIAN'S PERSPECTIVE

JULY 22, 2014

RR UCLA MEDICAL CENTER

PERCY LEE, M.D. ASSOCIATE PROFESSOR CHIEF, THORACIC AND GI RADIATION ONCOLOGY DIRECTOR, STEREOTACTIC BODY RADIATION THERAPY PROGRAM DEPARTMENT OF RADIATION ONCOLOGY DAVID GEFFEN SCHOOL OF MEDICINE AT UCLA

JONSSON COMPREHENSIVE CANCER CENTER

NATIONAL CANCER INSTITUTE DESIGNATED

UCLA Jonsson Comprehensive Cancer Center

- Understand the increasing role for lung SBRT/SABR
- Understand the need to balance tumor control and toxicity in choosing dose
- Understand difficulties and controversies in comparing dose amongst regimen (3DCRT to SBRT/SABR)
- Understand goals of SBRT Thoracic TCP Working Group – Preliminary Findings

SCOPE OF THE PROBLEM

LUNG CANCER

Estimated New Cases*

Estimated Deaths

			Males	Females		
Lung & bronchus	86,220	29%		Lung & bronchus	71,080	26%
Prostate	32,050	11%		Breast	39,840	15%
Colon & rectum	26,580	9%		Colon & rectum	24,790	9%
Pancreas	18,770	6%		Pancreas	18,030	7%
Liver & intrahepatic bile duct	12,720	4%		Ovary	13,850	5%
Leukemia	12,660	4%		Non-Hodgkin lymphoma	9,500	4%
Esophagus	11,650	4%		Leukemia	9,180	3%
Non-Hodgkin lymphoma	10,710	4%		Uterine Corpus	7,950	3%
Urinary bladder	10,410	3%		Liver & intrahepatic bile duct	6,190	2%
Kidney & renal pelvis	8,210 3% 299,200 100%			Brain & other nervous system	5,720	2%
All Sites				All Sites	270,290	100%

Stage Distribution: IASLC Lung Cancer Data Base Clinically Staged Cases, N = 53,646

Jemal et al, CA Cancer J Clin 2010

LUNG CANCER BY AGE

Percent of New Cases by Age Group: Lung and Bronchus Cancer 40 35 Lung and bronchus 31.7% Cases cancer is most 30 27.9% frequently diagnosed New 25 among people aged 21.4% 65-74. of 20 Percent 15 Median Age At Diagnosis 8.9% 10 8.6% 1.3% 0.3% 0.0% 0 20-34 35-44 45-54 55-64 65-74 75-84 <20 >84 Age SEER 18 2007-2011, All Races, Both Sexes

Number of New Cases per 100,000 Persons by Race/Ethnicity & Sex: Lung and Bronchus Cancer

SEER, 2007-2011

EARLY STAGE NSCLC TREATMENT OPTIONS

COULD LUNG SBRT PLAY A BIGGER ROLE IN THE TREATMENT OF EARLY STAGE NSCLC IN THE NEAR **FUTURE**?

LUNG CANCER SCREENING: NLST

<u>Purpose</u>: Could yearly CT screening reduce lung cancer mortality compared to CXR screening?

Aberle D, et al., NEJM 2011

NLST

Results:

- 53,454 patients
- High risk: 55-74 years old, 30 pk-year, if former smoker, quit within previous 15 years
- Rates of positive screen: 24% vs. 7% (CT vs. CXR)
- 247 vs. 309 deaths from lung cancer per 100,000 person-year from CT vs. CXR
- 20% relative reduction in lung cancer mortality from low-dose CT screening (6.7% absolute reduction) compared to CXR screening

Aberle D, et al., NEJM 2011

NLST FINDINGS

Percy Lee, M.D.

UCLA Jonsson Comprehensive Cancer Center

- Yearly low-dose CT screening in high-risk population reduce lung cancer mortality compared to CXR screening
- Potentially, many of these patients are too frail for surgery: SBRT
- Possibly, more cancers are detected at earlier stage, obviating the need for surgery: SBRT

SBRT/SABR

THERAPEUTIC RATIO

RTOG 0236 – Peripheral Tumor SBRT Dose

JAMA®

RTOG 0236:

- First North American cooperative group trial of SBRT
- Phase II: 55 pts (44 Stage IA, 11 Stage IB), <u>medically inoperable</u>, <u>peripheral tumors</u>
- **54 Gy in 3 treatments**
- Tumor control: 98%, Survival 72% at 3 years, median OS 48 months

Robert Timmerman; Rebecca Paulus; James Galvin; et al.

Central Tumor Toxicity with SBRT

VOLUME 24 · NUMBER 30 · OCTOBER 20 2006

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Excessive Toxicity When Treating Central Tumors in a Phase II Study of Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Lung Cancer

Robert Timmerman, Ronald McGarry, Constantin Yiannoutsos, Lech Papiez, Kathy Tudor, Jill DeLuca, Marvene Ewing, Ramzi Abdulrahman, Colleen DesRosiers, Mark Williams, and James Fletcher

Fig 4. Kaplan-Meier plot of time from treatment until grade 3 to 5 treatment related toxicity comparing patients with tumors in the central (perihilar and central mediastinal) regions from those with more peripheral tumors.

Jonsson Comprehensive Cancer Center

TUMOR CONTROL RATE BY BED10

Control Rates by BED10 For All Patients

	Total cases	BED <100 Gy	BED $\geq 100 \text{ Gy}$	р	Stage IA	Stage IB	p
Local tumor	36/257 (14.0%)	18/42 (42.9%)	18/215 (8.4%)	< 0.01	20/164 (12.2%)	16/93 (17.2%)	0.21
Regional nodal metastasis	29/257 (11.3%)	9/42 (21.4%)	20/215 (9.3%)	< 0.05	17/164 (10.4%)	12/93 (12.9%)	0.54
Distant metastasis	51/257 (19.8%)	11/42 (26.2%)	40/215 (18.6%)	0.3	32/164 (19.5%)	19/93 (20.4%)	0.87
BED, biological effective do	se.						
5y overall surviv	al	19.7 %	53.9 %	sig			

Onishi, H, JTO, 2007

OPTIMAL DOSE FOR PERIPHERAL TUMORS?

5 yr. OS by BED10 in Medically Operable Patients

FIGURE 4. Overall survival rate in operable patients according to the biological effective dose (BED). OS, overall survival rate; CI, confidence interval.

 $BED = nd(1+d/\alpha/\beta)$

<u>Schemes > 100 Gy:</u> 16 Gy x 3 = 48 Gy 12 Gy x 4 = 48 Gy 10 Gy x 5 = 50 Gy

Onishi, H, JTO, 2007

Percy Lee, M.D.

UCLA Jonsson Comprehensive Cancer Center

ELEKTA CONSORTIUM: LOCAL FAILURE BY DOSE

Stereotactic body radiation therapy and 3-dimensional conformal radiotherapy for stage I non-small cell lung cancer: A pooled analysis of biological equivalent dose and local control

Niraj Mehta MD, Christopher R. King MD, PhD, Nzhde Agazaryan PhD, Michael Steinberg MD, Amanda Hua BA, Percy Lee MD*

Department of Radiation Oncology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California

DOSE RESPONSE LUNG SBRT

DURPOSE:

- Is there a relationship between tumor control probability (TCP) and the Biological Effective Dose (BED) in Stage I NSCLC?
- Is there evidence for further dose escalation?
- Are we really doing better than before (SBRT vs. 3DCRT)?

- 42 PUBLISHED STUDIES (48 DATA POINTS) Heterogeneous!
- July 1988-March 2010
- Crude Local Control (TC) ≥ 2 years as a function of BED
- Scatter plot TC vs. BED
- □ TCP = exp([d-TCD₅₀]/k) / $[1 + exp([d-TCD_{50}]/k)]$
- Daily fraction size \geq 6 Gy considered SBRT- Assumptions!

- □ 2696 patients (SBRT: 1640; 3D-CRT: 1050
- □ 704 adenoCA, 847 SCC, 1145 NOS
- □ Daily fx size 1.2 4 Gy (total dose: 48-103) for 3D-CRT
- Daily fx size 6-26 Gy (total dose 20-66) for SBRT
- □ Median aBED 105.6 Gy (59.6 286.6)

RESULTS

No. of patients	2696
Age, y	73 (22-95)
Histology	
Adenocarcinoma	704 (26%)
Squamous cell carcinoma	847 (31%)
NOS	1145 (42%)
T stage	
T1	1585 (56%)
T2	1128 (40%)
NOS	96 (3%)
Operable	
Yes	421 (14%)
No	2531 (86%)
RT technique	
3D-CRT	1046 (39%)
SBRT	1640 (61%)
Absolute dose range, Gy	
3D-CRT	48-102.9 (1.2-4 Gy/fz
SBRT	20-66 (4.4-26 Gy/fx)
No. of fractions, range	
3D-CRT	12-49
SBRT	1-10
Median aBED, Gy	105.6
aBED range, Gy	59.6-286.6

3D-CRT, 3-dimensional conformal radiation therapy; aBED, average biological effective dose; NOS, not otherwise specified; RT, radiation therapy; SBRT, stereotactic body radiation therapy.

- Largest meta-analysis to model TCP as a function of BED for curative radiotherapy for stage I NSCLC
- □ Near plateau, TCP is \ge 90% with BED \ge 124 Gy (USC)
- Corresponds to 53 Gy in 3 fractions at isocenter (48 Gy in 3 fractions at periphery)

CONTROVERSY

Dose escalation, not "new biology", can account for the efficacy of SBRT with NSCLC

J. Martin Brown, PhD¹, **David J. Brenner, PhD**², and **David J. Carlson, PhD**³ ¹Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305

²Center for Radiological Research, Columbia University Medical Center, 630 W 168th St, New York, NY 10032

³Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520

OLD BIOLOGY

OLD BIOLOGY VS. NEW BIOLOGY

Brown et al. argues for a monotonic
relationship between TCP and BED
We avoided Old vs. New Biology

Equation is poor man way to normalize the dose
Unknown (model ≠ mechanism)

As dose increase, TC asymptote to 100%
BED is derived from LQ/USC models,
flawed; Circular argument

- Abscopal and vascular effects of SBRT?
 Timing of normal tissue effects: e.g..
 pneumonitis
 - different between 3DCRT and SBRT

ARGUMENTS THAT IF IT AIN'T BROKE WHY FIX IT

Critical Review

The Tumor Radiobiology of SRS and SBRT: Are More Than the 5 Rs Involved? J. Martin Brown, PhD,* David J. Carlson, PhD,[†] and David J. Brenner, PhD[‡]

*Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; "Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, and [‡]Center for Radiological Research, Columbia University Medical Center, New York, New York

Received May 9, 2013, and in revised form Jul 14, 2013. Accepted for publication Jul 17, 2013

Counter Arguments

COMMENTS

Dose Escalation, Not "New Biology," Can Account for the Efficacy of Stereotactic Body Radiation Therapy With Non-Small Cell Lung Cancer

In Regard to Brown et al

Shyam S. Rao, MD, PhD Department of Radiation Oncology Memorial Sloan-Kettering Cancer Center New York, New York

Jung Hun Oh, PhD Andrew Jackson, PhD Joseph O. Deasy, PhD Department of Medical Physics Memorial Sloan-Kettering Cancer Center New York, New York

Percy Lee, M.D.

CLA Jonsson Comprehensive Cancer Center

OTHER FACTORS THAT MIGHT INFLUENCE TUMOR CONTROL

Patient Factors:

Age, histology (in situ vs. invasive), tumor size/volume, tumor location, tumor doubling time, lung function?

Treatment Factors:

- Total dose, dose per fraction, number of fractions?
- Length of treatment? Time effects (BED 100 can be achieved with 3DCRT but takes many weeks). Tumor cell repopulation?
- Treatment techniques, margins, image-guidance, etc.?
- Prescription standards? Normalized to isocenter as best as possible

Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT)

- □ Five top-level groups:
- Tumor Control Probability (TCP)
- Normal Tissue Complication Probability (NTCP)
- Radiobiology
- Rationale for Prescription Schemes
- Reporting Standards

- The TCP and NTCP groups have divided into six anatomical subgroup
 - Cranial
 - Head & Neck
 - Thoracic
 - Abdominal
 - Pelvic
 - Spine

WGSBRT – Thoracic TCP

<u>Methodology:</u>

- 118 clinical studies reviewed on SBRT for lung cancer
- Reviews by 12 members of the Thoracic TCP Working Group primary data
- Selected re-review by group co-chairs for consistency
- Data modeling by Allen Li and his group (KM/actuarial figure digitized).

Objectives:

- Better model than LQ, USC for thoracic SBRT TCP?
- More accurate predictions for tumor control by biological and physical dose
- **Discern intrinsic radio sensitivity of lung tumors to SBRT (** α/β **)**

Sample Data Review Sheet for Consistent Data Collection

TCP Lung Versio	on 01.05																													
-	v	v		v	•						*		v				Ţ	_	-				-		¥		-		Ŧ	
			Bx				Control (Median	~ .	Median			II Surviv			Median			se-Speci	tic or Survival		Median	1	Hegional		ved Lobe		Median
Study	N Pts	N Tumors	Dose (Gy)	nfx	Rate 1yr	Rate 2yr	Rate 3yr	Rate 5yr	Rate 10yr	LC	Study Type	Followup (yrs)	Rate 1yr	Rate 2yr		Rate 5yr	Rate 10yr	OS				Surviva 5yr		CSS	1yr	2yr	Control 3yr	5yr	10yr	Control (yrs)
Study	FIS	Tumors	[09]	nix	iyr	Zÿr	Syr	əyr	luyr	(yrs)	туре	[yrs]	iyr	Zyr	зуг	oyr	iuyr	(yrs)	1yr	Zyr	Syr	Syr	iuyr	(yrs)	iyr	Zyr	Jyr	Syr	iuyr	(yrs)
Fakiris2009 T1	34		60	3								4.18						3.23			83.4%									
Fakiris2009 T2	36		66	3								4.18						2.04			67.0%									
Salazar2008 OS vs time for different stages	102		40	4			82.0%					3.17																		
Salazar2008 Stage I	60		40	4			98.3%					3.17		73.0%	62.0%	47.0%				87.0%	82.0%	70.0%								
Salazar2008 Stage III	30		40	4			60.0%					3.17			22.0%			1.25			30.0%									
Uematsu 2001	50	50	50-60 Gy for no prior RT; 30-45 Gy for prior RT cases							Note: At end of study, 30/50 pts alive with no recurren		°1.67	~88%	77.0%	66% (All pts) 86% in operable pts				~95%	91.0%	88.0%									

Updated/Clean Version

	2) used to fit mode									0: means no	data									
									unspecified = -1											
						KM=1			all staget = 0											
				patient population	patient population	Acturial=2	unkovn = 0.4 a	s unkown = 0												
			unspecified -1 assigned		fractions	Crude=3			-	GTV	Tstime			Local Contro	ol (LC)			Overall S	Survival (OS)	1
	N	N		-		Analysis	Dose to PTV	se to isocer	Patient	diameter	per	Elapsed	Rate	Rate	Rate	Rate	Rate	Rate	Rate	Ba
Study	Pts	Tumors	T1portion	(Gy)	nfx	type	Bs(%)	Ba(%)	Stage	(om)	fs (min)	Days	1yr	2yr	3yr	5yr	1yr	2yr	3yr	55
Salazar2008 Stage I	60	T1=45, T2=15,	0.75	40	4	Ö	1	0.754717	0	0.00	0	21	Ó	Ó	0.98333	Ó	Ó	0.73	0.62	0.4
Salazar2008 Stage IA	45	T1=45	1	40	4	1	1	0.754717	1	0.00	0	21	0	0	1	0	0	0.81	0.72	0.4
Salazar2008 Stage IB	15	T2=15	0	40	4	1	1	0.754717	2	0.00	0	21	0	0	0.93	0	0	0.55	0.42	0.4
Nagata2005	45	T1=32, T2=13	0.71111111	48	4	1	0.4	1	0	0.00	ñ	12	1	1	0.96444	0.96444	Ő	0.00	0	0
Nagata2005 Stage IA	32	T1=32	1	48	4		0.4	4	1	0.00	ů.	12	1	1	0.95	0.95	0.93	0.93	0.83	0.0
Nagata2005 Stage IB	13	T2=13	0	40	4		0.4	i i	2	0.00	0	12			1	1	0.82	0.72	0.72	0.1
Hof 2003	10	10 (T1=2, T2=8)	0.2	24.3	-		0.8	-	2	2.84	0	12	0.889	0.711	0	0	0.8	0.64	0.12	0.1
	57		0.701754386	45		2	0.67	0.07	0	3.13	0	5	0.005	0	0.92	0	0.86	0.65	0.6	6
Bauman 2009		57 (T1=40, T2=17)			3	1		0.67	0		0		0							
Timmerman 2010	55	59 (T1=44, T2=11)	0.8	54	3	1	0.99	0.99	U	0.00	0	12	0	0	0.976	0	0	0.73	0.558	0
Dunlap 2010	27	40 (T1=27, T2=13)	1	60	4	1	0.95	0.95	1	2.30	22	0.4	0.9	0.9	0	0	0.85	0.45	0.00	0.0
Dunlap 2010	13	40	0	55	4	1	0.95	0.95	2	2.30	22	0.4	0.7	0.7	0	0	0.85	0.45	0.00	0.0
Ricardi 2010	62	62 (T1=43, T2=19)	0.693548387	45	3	1	0.8	0.8	1	0.00	45	7	0.983	0.927	0.878	0	0.86	0.65	0.6	0
Bradley 2010	91	91(T1=58, T2=22, T3=2, M1=6)	0.637362637	54	3	2	0.95	0.95	0	0.00	0	7	0.94	0.86	0.86	0	0.84	0.7	0.6	C
Videtic 2010	26	28 (T1=22, T2=6)	0.785714286	50	5	2	0.95	0.95	0	2.25	0	5	1	0.944	0.944	0	0.88	0.65	0.52	0
Xia 2006	25	I=25, II=18 (I used only)	-1	50	10	2	0.95	0.5	0	0.00	0	14	0.96	0.96	0.96	0	0.91	0.91	0.91	0
Fritz2006NSCLC	33		-1	30	1	2	0.8	1	0	0.00	0	0	1	1	0.83	0	0.83	0.63	0.53	0.
Bral 2011 peripheral	40	T1=26, T2=14	0.65	60	3	2	0.9	0.9	ñ	0.00	ů.	10	0.97	0.84	0.00	0	0	0.52	0	0
Voort van Zup 2009(periphe	59	T1=39, T2=31	0.557142857	60	3	1	0.8	0.8	ň	2.82	100	0.4	0.96	0.96	0	0	0.83	0.62	0	0
voor van cyp zoootpenprie	11	11-00,12-01	0.557142857	45	2		0.8	0.8	0	2.82	100	0.4	1	0.78	0	ů.	0.00	0.02	0	č
	35		0.551142051		3				0		100		1	1			0	0		i i
			1	60	3		0.8	0.8	1	2.82		0.4			0	0			0	
	24		0	60	3	1	0.8	0.8	2	2.82	100	0.4	0.89	0.89	0	0	0	0	0	0
Mohammad2011	36	39 (T1=26, T2=10, M=3)	0.666666667	52	4.3	1	0.8	0.8	0	0.00	0	11	0.91	0	0	0	0	0	0	0
Nath2011	46	T1=31,T2=19	0.62	48	4	2	0.4	0.4	0	2.20	0	0.4	0	0.95	0	0	0	0.54	0	0
Matsuo2011	101	T1=73, T2=28	0.722772277	48	4	1	0.4	1	0	0.00	0	10	0.98	0.9	0.868	0.868	0.95	0.78	0.586	0.4
Matsuo2011<20mm	33	T1	1	48	4	1	0.4	1	1	0.00	0	10	0	0	0.964	0	0	0	0.691	0
Matsuo201120-30mm	40	T1	0	48	4	1	0.4	1	1	0.00	0	10	0	0	0.845	0	0	0	0.572	0
Matsup201130-50mm	28	T2	0	48	4	1	0.4	1	2	0.00	0	10	0	0	0.781	0	0	0	0.483	0
Koto 2007 T1	19		1	45	3	1	0.95	1	1	0.00	0	7	0.93824	0.779411765	0.779	0.779	0	0	0.717	0
Koto 2007 T2	12		0	60	8	1	0.95	1	2	0.00	0	14	0.90882	0.6	0.4	0.4	0	0	0.835	Ö
Wulf 2004 NSCLC	20	T1=2,T2=10,T3=8	0.1	34	3	2	1	0.666667	0	0.00	ů.	10	0.92	0.92	0.92	0.92	0	0.32	0.32	0.1
Wulf 2005 12Gv*3fx	31	31(T1-3)	-1	37		-	0.65	0.65	0	0.00	0	0	0.52	0.92	0.52	0.02	0	0.52	0.02	0.1
Wulf 2005 26Gy"1fx	31	31(T1-3)		26		-	0.8	0.8	0	0.00	0		0	0.52	0		0			0
Beitler2006	75			40		2	0.4	0.4	0	3.71	0	27	0	0	0	0	0.63	0.45	0	0.1
	47	83 (unspecified stages)	-		2		0.4	0.4	0	2.12	0	21	0		0	0		0.45	0	0.1
Hara2006		59 (unspecified)	-1	30.16949153	1	1	1		0		0	1	0.93	0.78		0	0.765		0	
McCammon 2009	105	25	-1	58.28571429	3	2	0.4	0.4	0	0.00	0	5	1	0.893	0.893	0	0	0	0	0
	59		-1	45	3	2	0.4	0.4	0	0.00	0	5	0.89	0.69	0.595	0	0.8	0.75	0	0
	82		-1	28	3	2	0.4	0.4	0	0.00	0	5	0.405	0.135	0.081	0	0	0	0	0
Onimaru 2003	13	18 peripheral and < 3 cm (T1)	1	60	8	2	0.8	1	1	0.00	0	14	1	1	1	0	0	0	0	6
	32	39 central or >3 cm (T2)	0	48	8	2	0.8	1	2	0.00	0	14	0.86	0.77	0.696	0	0	0	0	0
Olsen 2011	111	111 (peripheral) (T1=100, T2=30)	0.769230769	54	3	2	0.95	0.95	0	2.48	0	8	0.99	0.91	0	0	0.8	0.6	0	0
	11	11(T1=6,T2=5)	0.545454545	50	5	2	0.95	0.95	0	3.25	0	14	1	1	0	0	0.9	0.9	0	0
	8	8(T1=3,T2=5)	0.375	45	5	2	0.95	0.95	Ő	3.72	Ő.	16.5	0.75	0.5	0	Ő.	0.6	0.5	Ô.	Ô
Inoue 2013	109	T1=79. T2=30	0.724770642	42.20183486	4	2	0.95	1	0	2.20	0	6	0.95	0.88	0.81	0.78	0.9	0.8	0.68	0.6
Timmerman 2006	70	70 (T1=35, T2=35)	0.5	63	2	1	0.8	0.8	ő	3.17	ő	10	0.99	0.95	0.768	0	0	0.547	0.00	0.0
Baumann2006	138	T1=56,T2=85	0.397163121	40.17021277	ž	2	0.65	0.65	ŏ	4.21	ŏ	10	0.975	0.933	0.858	0.8	0.85383	3 0.65085		
CadimanineCool	56	11-00,12-00	1	40.17021277	2	2	0.65	0.65	1	0.00	ů.	10	1	1	1	0.885	0	0.00000	0.00100	0
	85		0	40.17021277	0	2	0.65	0.65		0.00	0	10	0.967	0.885	0.737	0.737	0	0	0	0
Zhang 2012 TK 4cm	68	00(). // D	-1		3	4		0.65	4	2.73	0	10	0.367	0.985	0.985	0.757	0	0	0	0
		68 (stages unspecified)		50	4	4	0.8		1		0	4		0.305	0.305	0		0		
Shioyama 2013	8	8(T1=4,T2=4)	0.5	48	4	Z	0.4	1	U	2.9	0	4	1	1	1	1	0	0	0.72	0
Westover 2012	15	20 (T1=18,T2=2)	0.9	45	3	2	0.4	0.95	0	1.50	22.5	4	1	1	0	0	0	0.64	0	0
Rove 2012	47	(40 lesions central by RTOG definition(T1=24,T2=		50	4	2	0.95	0.9	0	2.90	0	0.4	1	0.94	0	0	0	0	0	0
Grils 2012	505)5 (pooled study of 5 institutions) (T1=63%, T2=33		54	3	1	0.4	0.4	0	0.00	0	0.4	0	0.94	0.91	0	0	0.6	0.48	0
Bibauk 2012	51	51 (single insitution) (T1=31,T2=20)	0.607843137	60	3	2	0.83	0.83	0	2.76	0	0.4	0.92	0.86	0	0	0.855	0.794	0	0
Clarke 2012	82	82 (single institution) (T1=58,T2=24)	0.707317073	53.30487805	3	1	0.4	0.4	0	0.00	0	0.4	0	0.9	0	0	0	0.67	0	0
Duncker-Rohr NSCLC	26		-1	35.57777778	4.24444444	1	0.6	0.6	0	2.71	0	0.4	0.95	0.95	0.95	Ū.	0	0	0	0
Robinson 2013	78	(T1=56.T2=22)	0.717948718	54	3	i	0.84	0.84	1	2.00	ů	0.4	1	0.952	0.952	0.952	Ő	ů.	ň	i c
Kopek2009	88	88 (T1=51,T2=36,T3=1)	0.579545455	51.64772727	3	1	0.67	1	ó	2.00	ŏ	0.4	0.965	0.89	0.89	0.352	0	0	- 0	0
Guckenberger2009 NSCLC	40	41(NSCLC, T1=13,T2=19,T3=9)	0.317073171	34,51829268	3.146341463	1	0.675714286	0.675714	0	3.81	0	0.4	0.000	0.05	0.84	0	0	0	0.37	1
Takeda2009 T1	38	41(NBCCC, 11=13,12=13,13=3) 38	0.511075171	50 50 50 50	5, 14034 1403		0.075714200	0.075714		0.00	0	0.4	0.93	0.93	0.93	0	0	0	0.37	1

Thank you - Acknowledgments

- □ WGSBRT TCP Group
 - Allen Li Co-chair
 - Billy Loo Co-chair
 - Jimm Grimm
 - Ellen Yorke
 - Tithi Biswas
 - Issam El Naga
 - Timothy Solberg
 - George Ding
 - Andy Jackson
 - Spring Kong
 - Moyed Miften
 - Chang Song
 - Tamara LaCouture

