Reporting Standards for Normal Tissue Complication Modeling for Hypofractionated/SBRT Treatments

> Andrew Jackson Memorial Sloan-Kettering Cancer Center

Acknowledgements

- Work supported by NIH grant R01 CA129182
- Collaborators:
 - MSKCC: Fan Liu, Eric Williams, Ellen Yorke, Brett Cox, Josh Yamada, Andreas Rimner, Abe Wu, Ken Rosenzweig, Shaun Din, Rob Mutter
 - WG on Hypofractionation/SBRT

Clinical Utility vs Scientific Elegance

- Most papers on outcome of radiotherapy are written to establish a specific scientific point
- Little attention is paid to the clinical utility of the information provided
- With a little effort, clinical utility of an elegant paper can be vastly improved
- What do we need in order to apply results clinically, and use them in meta-analysis?

Necessity of combining data sets

- Number of complications in any given treatment series is usually low
 - False negatives
 - No statistical power to determine model parameters
- Dose-volume exposures correlated in individual series
 - Introduces phony correlations with complications (False positives)
 - Insufficient range of dose-volume combinations to determine model parameters

Problems in synthesizing data

• Endpoint definitions:

- Need to be clinically relevant
- Need to be specific
 - Rectal bleeding or incontinence vs grade 2 RTOG toxicity
 - Different comps. have different dose-volume effects
- Need to be standardized

Problems in synthesizing data

- Different dose volume limits proposed – These cannot be combined
- · Different models may be fit
 - Responses cannot be combined
 - gEUD responses with different "a" values cannot be combined

Problems in synthesizing data

• Standard of reporting is **POOR**

- Lack of basic statistics (numbers not stated!)
 - Schultheiss 1994: "The information in this report would be of greater clinical use if some indication had been provided of the total number of patients from which the myelopathy cases were drawn"
- Locations of bins in e.g. quartile plots not given
- Model parameters (and uncertainties) not be stated

In other words:

- Report the numbers of patients with complications and the number treated
 - Elementary statistics increase clinical utility
 Values with uncertainties can be combined
- Be comprehensive
 - Report as much about the data as possible
- How far can we take this?

Example: DVH Atlas of Severe Esophagitis

Transformation of the second second

- Report the number of paraspinal patients whose esophagus DVH passes above a given dose-volume combination (d_i,v_j)
 Both with and without severe esophagitis
- Be comprehensive:
 - Do this for each (d_i, v_i) combination

Probability that true rate of severe esophageal complication > 10%

Severe esophagitis from single fraction paraspinal treatments

Problems in synthesizing data from hypofractionated treatments

- How do we deal with treatments with different fraction number?
 - Many NSCLC studies combine data from 3, 4, 5 fraction treatments
 - Uncertainty in applicability of LQ model for large fraction sizes

How do we deal with treatments with different fraction numbers?

• Solution:

- Report basic numbers stratified by fraction number
 - Equal doses delivered in the same number of fractions have same effect*
 - E.g. separate atlases for each fraction number
 - Allows for re-analysis using different models of fractionation

effects

*Provided treatment time is not an issue

Can we hope to use clinical data to shed light on appropriate fractionation model?

- NSCLC SBRT Fractionation schemes have a very big range of BEDs
 - -5 X 9 Gy; 4 X 12 Gy; 3 X 18 Gy →(α/β = 3 Gy)→ BED = 180 Gy; 240 Gy; 378 Gy
- Can we tell which fractionation model works best to describe the complication data?

Can we hope to use clinical data to shed light on appropriate fractionation model?

- NSCLC SBRT Fractionation schemes have a very big range of BEDs
 - However! Monotonic increase in physical dose is mirrored by monotonic increase in BED
 - Little cross talk between the fractionation schemes
 - Ranking of patients tend not to mix or change with α/β V(d) order unchanged within one fraction # cohort
 - Fraction # cohorts too far apart for much mixing mix
 - Chest wall pain: physical dose may do just as well as BED

Can we hope to use clinical data to shed light on appropriate fractionation

model?

- With large numbers, we may overcome these limitations
 - 61 cases grade ≥2 chest wall pain in 316 tx (physical dose excluded at 95% conf)*

Can we hope to use clinical data to shed light on appropriate fractionation model?

With alternative fractionation schemes, we may overcome these limitations:

 Data from NSCLC and paraspinal treatments on brachial-plexopathy
 1 X 24 Gy breaks the monotonic relation between physical dose and BED*

Electronic Supplements:

- Exploit these to the max!
 - No practical limit on the amount of data that can be reported
 - Full patient specific DVH data can be reported and associated with outcome and clinical factors (age/sex etc..)
 - Journals become the peer reviewed data poolWith associated quality assurance