Reporting Standards for Normal Tissue Complication Modeling for Hypofractionated/SBRT Treatments

Andrew Jackson
Memorial Sloan-Kettering Cancer Center

Acknowledgements

- Work supported by NIH grant R01 CA129182
- Collaborators:
 - MSKCC: Fan Liu, Eric Williams, Ellen Yorke, Brett Cox, Josh Yamada, Andreas Rimner, Abe Wu, Ken Rosenzweig, Shaun Din, Rob Mutter
 - WG on Hypofractionation/SBRT

Clinical Utility vs Scientific Elegance

- Most papers on outcome of radiotherapy are written to establish a specific scientific point
- Little attention is paid to the clinical utility of the information provided
- With a little effort, clinical utility of an elegant paper can be vastly improved
- What do we need in order to apply results clinically, and use them in meta-analysis?
Necessity of combining data sets

- Number of complications in any given treatment series is usually low
 - False negatives
 - No statistical power to determine model parameters
- Dose-volume exposures correlated in individual series
 - Introduces phony correlations with complications (False positives)
 - Insufficient range of dose-volume combinations to determine model parameters

Problems in synthesizing data

- Endpoint definitions:
 - Need to be clinically relevant
 - Need to be specific
 - Rectal bleeding or incontinence vs grade 2 RTOG toxicity
 - Different comps. have different dose-volume effects
 - Need to be standardized

Problems in synthesizing data

- Different dose volume limits proposed
 - These cannot be combined
- Different models may be fit
 - Responses cannot be combined
 - gEUD responses with different “a” values cannot be combined
Problems in synthesizing data

• Standard of reporting is **POOR**
 – Lack of basic statistics (numbers not stated!)
 • Schultheiss 1994: "The information in this report would be of greater clinical use if some indication had been provided of the total number of patients from which the myelopathy cases were drawn"
 – Locations of bins in e.g. quartile plots not given
 – Model parameters (and uncertainties) not be stated

In other words:

• Report the numbers of patients with complications and the number treated
 – Elementary statistics increase clinical utility
 – Values with uncertainties can be combined
• Be comprehensive
 – Report as much about the data as possible

• How far can we take this?

Example: DVH Atlas of Severe Esophagitis

• Report the number of paraspinal patients whose esophagus DVH passes above a given dose-volume combination \((d_i,v_j)\)
 – Both with and without severe esophagitis

• Be comprehensive:
 – Do this for each \((d_i,v_j)\) combination
Dose-Volume Atlas for Incidence of Severe Esophagitis from single fraction paraspinal treatments (partial snapshot of Excel file in supplement)

<table>
<thead>
<tr>
<th>Vol (cc)</th>
<th>Dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Probability that true rate of severe esophageal complication > 10%

![Graph showing Dose Response for >= Grade 3 Esophagitis Single Fraction Treatments](image)

Severe esophagitis from single fraction paraspinal treatments

![Graph showing Probability of >= grade 3 esophageal complications](image)
Problems in synthesizing data from hypofractionated treatments

• How do we deal with treatments with different fraction number?
 – Many NSCLC studies combine data from 3, 4, 5 fraction treatments
 – Uncertainty in applicability of LQ model for large fraction sizes

How do we deal with treatments with different fraction numbers?

• Solution:
 – Report basic numbers stratified by fraction number
 – Equal doses delivered in the same number of fractions have same effect*
 – E.g. separate atlases for each fraction number
 – Allows for re-analysis using different models of fractionation effects

*Provided treatment time is not an issue

Can we hope to use clinical data to shed light on appropriate fractionation model?

• NSCLC SBRT Fractionation schemes have a very big range of BEDs
 – 5 x 9 Gy; 4 x 12 Gy; 3 x 18 Gy \(\Rightarrow (\frac{\alpha}{\beta} = 3 \text{ Gy}) \Rightarrow\)
 BED = 180 Gy; 240 Gy; 378 Gy
• Can we tell which fractionation model works best to describe the complication data?
Can we hope to use clinical data to shed light on appropriate fractionation model?

- **NSCLC SBRT Fractionation schemes have a very big range of BEDs**
 - However! Monotonic increase in physical dose is mirrored by monotonic increase in BED
 - Little cross talk between the fractionation schemes
 - Ranking of patients tend not to mix or change with α/β
 - V(d) order unchanged within one fraction # cohort
 - Fraction # cohorts too far apart for much mixing
 - Chest wall pain: physical dose may do just as well as BED

Can we hope to use clinical data to shed light on appropriate fractionation model?

- **With large numbers, we may overcome these limitations**
 - 61 cases grade ≥2 chest wall pain in 316 tx (physical dose excluded at 95% conf)*

Can we hope to use clinical data to shed light on appropriate fractionation model?

- **With alternative fractionation schemes, we may overcome these limitations:**
 - Data from NSCLC and paraspinal treatments on brachial plexopathy
 - 1 X 24 Gy breaks the monotonic relation between physical dose and BED*

* S. Din, E. Williams, A. Jackson, K. Rosenzweig, A. Wu, A. Foster, E. Yorke, A. Rimner, ASTRO 2013

* S. Din, S. Watanabe, A. Jackson, K. Rosenzweig, A. Wu, A. Foster, E. Yorke, A. Rimner, ASTRO 2013

* S. Din, E. Williams, A. Jackson, K. Rosenzweig, A. Wu, A. Foster, E. Yorke, A. Rimner, ASTRO 2013
Electronic Supplements:

• Exploit these to the max!
 – No practical limit on the amount of data that can be reported
 – Full patient specific DVH data can be reported and associated with outcome and clinical factors (age/sex etc.)
 – Journals become the peer reviewed data pool
 • With associated quality assurance