

### **Cloud Computing in Medical Imaging**

George Kagadis, PhD, FAAPM

Panagiotis Papadimitroulas, MSc

Department of Medical Physics, School of Medicine, University of Patras, Greece 56<sup>th</sup> AAPM annual meeting, Austin, TX July 20-24, 2014

## **Conflict of Interest**

No conflicts of interest to declare

### Contents

- Introduction to Cloud Computing
- Cloud types: IaaS, PaaS, SaaS
- What is the need of Cloud Computing in healthcare?
- Cloud Computing and medical imaging
- Cloud PACS
- Cloud Computing in research
- Ethical issues and security

### Introduction to Cloud Computing I

'Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared poll of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction'

(NIST)

 It is emerging as a solution to the challenge of delivering complex services and data interchange over the Internet

### Introduction to Cloud Computing II

- · Part of our daily life; Gmail, Google docs, Dropbox, etc.
- Major reason for its success is due to the everdecreasing cost and ubiquitous presence of fast networks: access large data sets remotely in real-time.

#### Grids

Computational power similar to large distributed and parallel high performance computing systems

#### Clouds

Challenge Internet-scale computing limitations such as application accessibility and storage space

### **Cloud types - laaS**

- Uses virtualization technology to allow several virtual systems to operate on top of a single physical hardware infrastructure in an isolated manner.
- The key sw module in virtualization is the hypervisor that manages and organizes the virtual resources on the physical hw
- Providers can deliver on-demand virtual machines with configurable resources.
- · Easy scalability of hw resources (i.e. storage)
- No need to care about wasting resources
- Virtualization facilitates a faster recovery from hw and system failures.

### **Cloud types - PaaS**

- PaaS includes all the features provided by IaaS, but the user is able to use the provider's system platform.
- PaaS allows clients to develop their own system using the platform tools, without having to install and maintain them.
- Users get OS and tools ready and need not worry about keeping them updated

### **Cloud types - SaaS**

- In SaaS cloud providers install, manage, and operate the sw application, and the user has neither knowledge nor control of the underlying infrastructure.
- The end user has the least flexibility but the cost is lower (Gmail, Google Docs, Dropbox, etc.).

# What is the need for cloud computing in healthcare?

- Patient data can be easily stored in virtual archives, facilitating data sharing and reducing storage requirements.
- Continuing education teaching files shared access to learning tools.
- Cloud storage prices are dropping faster than enterprise storage prices.
- CT and MR studies continuously increase in size

### **Cloud computing and medical imaging**

- The main driving forces for cloud computing use in medical imaging are data management, image processing and sharing demands.
- Quantitative imaging relies on heavy computational workload where sharing computing facilities through the use of cloud can play a critical role.
- Development of benchmarks allowing image processing algorithms comparison under common measures and standards.

### **Cloud PACS**

#### Advantages

- Shared resource utilization
- Economies of scale
- · Lower maintenance management overheads
- Location and device independence

#### Components

- · Image visualization application
- Workflow engine
- Image archiving system

### Cloud based image visualization I

- Cloud PACS uses remote visualization where servers in the cloud data center are responsible for rendering the images and sending them to the remote client or end-point device.
- End-point device to cloud PACS communication; thin client applications, rich Internet applications and desktop virtualization.

### Cloud based image visualization II

- With the advent of HTML5, zero-footprint clients have become ubiquitous for clinical viewers. Users only need to have their browser up-to-date (expected to continue and accelerate).
- Desktop virtualization provides remote access to full featured OS environment running in a remote machine (expected to gain FDA approval).

### **Cloud based workflow**

- Moving the engine to the cloud provides several opportunities for improvement within and across healthcare organizations:
  - Ability to distribute work more efficiently
  - Balance work across the physician population by specific criteria

### **Cloud based image archive**

- · Aggregation of imaging records
- Prior studies are available for comparison
- Reduce unnecessary repeat exams
- Reduce archiving to CDs/DVDs
- Image sharing for referrals
- · Cross-enterprise archives





### **Cloud computing in Research I**

- Cloud-based research applications make parallel computation on large datasets easier and more cost-effective; bioinformatics discipline will be highly affected.
- Clinical trials are well suited for cloud-based infrastructures. Analyses can be parallelized by treating each datum concurrently.

### **Cloud computing in Research II**

- Greatly improved data accessibility and efficiency of analysis.
- Beyond data storage, the analysis platform of the cloud is the critical component which needs to support a wide spectrum of queries to the data.
- Machine learning is well-suited to cloud-based infrastructures and could improve the power of the trial's conclusions and provide comparisons between inter-institutional practices.



### Ethical issues and security I

- The major concerns are to ensure privacy and security of patient data, as well as to make certain that only authorized individuals have access to the data.
- The service provider should provide written assurance for data protection from unauthorized use or from uses not originally intended by the researchers.
- The service provider must be able to destroy data upon client instruction in the event of security breach.
- Researchers should ensure they retain ownership of the data, through a written clause in the contract for cloud services.

### Ethical issues and security II

- Security can be defined by: confidentiality, integrity and availability.
- For medical records, security is complicated since few requirements must be fulfilled to ensure protection of personal data
- For data exchange over the Internet techniques such as SSL and TLS provide strong data protection.
- Network security can be strengthened by secure VPNs between the organization and the cloud.
- Data integrity must be assured at all levels. Cloud providers
  protect storage with the aid of technologies like RAID RAIN

### Literature

- 'Cloud computing in medical imaging' Kagadis GC, Kloukinas C, Moore K, Philbin J, Papadimitroulas P, Alexakos C, Nagy PG, Visvikis D, Hendee WR. Med Phys. 2014; 40(7): 070901.
- 'Automation and advanced computing in clinical radiation oncology' Moore KL, Kagadis GC, McNutt TR, Moiseenko V, Mutic S. Med Phys. 2014;41(1):010901.
- Creating healthcare data applications to promote HIPAA and HITECH compliance' AWS, August 2012.

