Clinical applications of structured databases in radiation therapy

Todd McNutt, Scott Robertson, Sierra Cheng, Joseph Moore, Harry Quon, Joseph Herman, Michael Bowers, John Wong, Theodore DeWeese

Disclosure:
Funding from Elekta and Philips

This is NOT a Cloud

Nomograms
Designed for data sharing

Types of data in radiotherapy

Structured data standards

<table>
<thead>
<tr>
<th>Structured data standards</th>
<th>Types of data in radiotherapy</th>
<th>Designed for data sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM RT</td>
<td>Radiation Plans</td>
<td></td>
</tr>
<tr>
<td>ICD9 (10)</td>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>ICD 0</td>
<td>Morphology</td>
<td></td>
</tr>
<tr>
<td>CTCAE</td>
<td>Toxicity</td>
<td></td>
</tr>
<tr>
<td>AJCC</td>
<td>Staging</td>
<td></td>
</tr>
<tr>
<td>LOINC</td>
<td>Labs/Measures</td>
<td></td>
</tr>
<tr>
<td>RxNorm</td>
<td>Medications</td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>Procedures/Billing</td>
<td></td>
</tr>
</tbody>
</table>
Treatment Timeline

- **Simulation**
 - Demographics
 - Image Guidance
- **Planning**
 - Treatment Targets
 - OARs
 - OVH
- **Weekly**
 - Toxicity
 - Chart
- **End of Treatment**
 - Acute Toxicity
 - Patient Status
 - Symptom Mgmt
- **Follow Up**
 - Late Toxicity
 - QoL
 - Disease Response

Data Collection in Clinic

- **Clinical Assessment**
 - Quality of life
 - Disease Status

Extract, Transform, Load

- **MOSAIQ**
 - SQL Query
 - Lab, Toxicity, Assessments
- **Oncospace**
 - Scripts, Python, DICOM
 - DVH, OVH, Shapes
- **Pinnacle TPS**
 - Lab, Toxicity, Assessments
Types of databases

- Relational databases
 - SQL based
 - Tables and their relationships
- Object or document oriented databases
 - XML Databases
 - NoSQL

Database Table Design
(Key-Value)

- While there are many types of medical data, there is a much smaller number of classes of medical data (i.e. PSA, K, Her2/Neu are all lab tests)

<table>
<thead>
<tr>
<th>Laboratory Values</th>
<th>TestName</th>
<th>TestValue</th>
<th>TestUnit</th>
<th>TestDate</th>
<th>NormalRangeLower</th>
<th>NormalRangeUpper</th>
<th>Laboratory Location</th>
<th>Laboratory Values Key</th>
<th>PatientIDKey</th>
<th>ClinicalAssessmentKey</th>
<th>DataEntryKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA_VALUE</td>
<td>WBC</td>
<td>CA19-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prostate specific antigen 8 12/25/2005

- While there are many types of medical data, there is a much smaller number of classes of medical data (i.e. PSA, K, Her2/Neu are all lab tests)
Use of SQL DB reduces search to an SQL query

Trivial SQL Lesson

```sql
SELECT roi.ID, roi.volume
FROM RegionsOfInterest roi
WHERE roi.name = 'r_parotid'
ORDER BY roi.ID
```

Output

<table>
<thead>
<tr>
<th>ID</th>
<th>Volume</th>
<th>Dose_to_50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2931</td>
<td>47.0198</td>
<td>3257.88</td>
</tr>
<tr>
<td>2975</td>
<td>23.5393</td>
<td>2875.21</td>
</tr>
<tr>
<td>3009</td>
<td>24.0458</td>
<td>3056.14</td>
</tr>
<tr>
<td>3054</td>
<td>26.6619</td>
<td>3466.96</td>
</tr>
<tr>
<td>3080</td>
<td>64.7959</td>
<td>2965.67</td>
</tr>
<tr>
<td>3123</td>
<td>40.1324</td>
<td>2864.71</td>
</tr>
<tr>
<td>3160</td>
<td>32.7532</td>
<td>3226.49</td>
</tr>
<tr>
<td>3230</td>
<td>24.8615</td>
<td>2795.85</td>
</tr>
<tr>
<td>3250</td>
<td>39.3615</td>
<td>6310.66</td>
</tr>
<tr>
<td>3289</td>
<td>24.6493</td>
<td>2858.92</td>
</tr>
<tr>
<td>3315</td>
<td>40.6475</td>
<td>2984.79</td>
</tr>
</tbody>
</table>

Simple SQL Lesson

```sql
SELECT roi.ID, roi.volume, MIN(dvh.X) as dose_to_50
FROM DVHData dvh
INNER JOIN RoiDoseSummaries rds
on rds.ID = dvh.roiDoseSummaryID
INNER JOIN RegionsOfInterest roi
on roi.ID = rds.roiID
WHERE roi.name = 'r_parotid'
and rds.type = 'Cumulative DVH, Norm Volume'
and dvh.Y <= 0.50 -- percent volume
GROUP BY roi.ID, roi.volume
ORDER BY roi.ID
```
Shape-dose relationship for radiation plan quality

- More efficient plan optimization (10 fold)
- Normal tissue doses reduced (5-10%)
- Clinically released for Pancreatic Cancer

Toxicity trends during and after treatment – detect outliers

- **Dysphagia**
 - Swallowing
 - Worsens after Tx for many patients then improves long term

- **Mucositis**
 - Inflammation
 - Heals after Tx for most patients

- **Xerostomia**
 - Dry Mouth
 - Tends to be permanent

DVH, Toxicities and Grade distributions

- Voice Change
- Larynx
- Trachea
- Dysphagia
- Larynx, edema
- Hoarseness
- Vocal Cord

- Number of patients by grade at D50%
Dysphagia and Xerostomia

Larynx vs Grade ≥ 2 Dysphagia

Dysphagia and Xerostomia

Treatment Timeline

At what time point do we have enough data to make decision based on future prediction?

Summary

- The Oncospace model can house RT data effectively and provides a model for sharing
- Data collection in the clinical environment has been demonstrated
- Decision support to improve quality and safety has been demonstrated
- Personalized medicine has not been fully demonstrated, but remains a tenable goal
Acknowledgments

- JHU - RO
 - Binbin Wu PhD
 - Kim Evans MD
 - Robert Jacobs PhD
 - Joseph Masse PhD
 - Wuyang Yang MD, PhD
 - John Wong PhD
 - Theodore DeVries MD
 - GE Team
 - Joseph Heran MD
 - Amy Shack Pinto PA
 - Eilene Fabris MD
 - H&N Team
 - Harry Qian MD
 - Giuseppe Sanguineti MD
 - Heather Stamer MD
 - Jeremy Richmond MD
 - Simon Bai MD

- JHU - CS
 - Russ Taylor PhD
 - Misha Kazhdan PhD
 - Patricio Simari PhD
 - Jonathan Kranz

- JHU - Physics
 - Alex Sztako PhD
 - Tomas Bednarek PhD

- Erasmus
 - Steven Petit PhD

- Philips PROS
 - Karl Bzdusek MD

- GI Team
 - Joseph Herman MD
 - Amy Shack Pinto PA
 - Eilene Fabris MD

- H&N Team
 - Harry Qian MD
 - Giuseppe Sanguineti MD
 - Heather Stamer MD
 - Jeremy Richmond MD
 - Simon Bai MD