4D PET: promises and limitations

Tinsu Pan, Ph.D.

M.D. Anderson Cancer Center The University of Texas

Outlines

- Background
- Gating techniques:
 Deep inspiration breath hold
 4D PET/CT

- Non-gating techniques
 Average CT (0.87 mSv) to match the temporal resolution of PET
- Summary

1 PET before treatment Longer setup time (5 min) Longer acq. time (10 min) Longer proc. time (10 min)

4D PET/CT (challenging to perform in the clinic)

4D PET patient study

Which one is not a limitation of a 4D PET scan (relative to a regular PET scan)?

20%	1.	Longer acquisition time
10%	2.	Higher radiation exposure from F18-FDG
10%	3.	More complex in set-up
3%	4.	No reimbursement for 4D PET
13%	5.	More complex in post-processing

Which one of the following is not a limitation of a 4D PET scan compared with a regular PET scan?

- 1. Longer acquisition time
- 2. Higher radiation exposure from F18-FDG
- 3 More complex in set-up and post-processing

Ref: Nehmeh, SA, et al, Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004

- 4. No reimbursement for 4D PET
- 5. Need 4D CT for accurate quantitation

Which CT data should be used for attenuation correction of the 4D PET data?

17%	1.	End-inspiration CT
17%	2.	End-expiration CT
3%	3.	Free-breathing CT
13%	4.	4D CT
13%	5.	Average CT

Which CT data should be used for attenuation correction of the 4D PET data?

- 1. End-inspiration CT
- 2. End-expiration CT
- 3. Free-breathing
- 4. 4D CT
- 5. Average Cl

Clinical impact					
	Nuc Med (Osman, JNM 05)	Rad Onc (Liu IJORBP 06)	Rad Onc (Aristophanous , IJORBP 11)	Nuc Med (Chi IJORBP 08)	Cardiology (Gould JNM 07)
# Patients	300	152 (57% III & VI)	10	216	259
Study	PET/CT	4D-CT	4D-PET	PET/CT w/ACT	Cardiac PET/CT w/ACT
Misalignment Motion	2%	11% > 1cm	All < 1 cm	15% Δ SUV > 20%	40%
% 🛆 Volume			significant	8% ≥ 100% (17)	
Centroid shift				6% ≥ 5 mm (13)	
No evidence that 4D PET improves planning					

Ref: Nehmeh, SA, et al, Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004

Activity concentration and SUV Measured activity (k Bq / ml) Injected dose(k Bq) Body weight (g) 1 Me $1\ mCi = 3.7\ x\ 10^7\ dps = 3.7\ x\ 10^7\ bequerel\ (Bq)$

Differences between PET and CT

- spatial resolution ~ 5-10 mm
 spatial resolution < 1 mm
 temporal resolution ~ breathing cycle
 temporal resolution < 1 sec

Potential misalignment between PET and CT images

Free-breathing or breath-hold CT?

Breathing artifacts to physiological info

Misalignment in breathing states

Mis-matched PET-CT data sets

Mismatch 1: CT diaphragm position lower than PET

CT diaphragm position higher than PET

Average CT (ACT)

Data acquired at high temporal resolution and averaged over one breath cycle

Attenuation correction, RT dose calculation, IGRT

Clinical Data

NSCLC Image: state sta

Lung lesion or liver lesion?

Inside the liver?

Outside the liver

Average CT

Tumor and cardiac imaging

Summary

- Respiratory gating PET can improve quantification, yet is challenging to implement in the clinic
- Respiratory gated or 4D-CT is routine in RT
- Average CT can improve registration of CT and PET

Some factors other than respiratory motion affecting quantification

Incorrect patient info

168 kg, 133 cm, SUV = 4.8, BMI = 95

Patient motion during the scan

Correction of patient motion

Which one is not correct for average CT?

10%	1.	It has a temporal resolution of about one breath cycle
10%	2.	It can be used for dose calculation in RT
10%	3.	It can be used in registration with CBCT in IGRT
10%	4.	It can be derived from 4DCT
3%	5.	It has a well-defined boundary for a moving object

Which one of the following is not correct for average CT ?

- 1. It has a temporal resolution of one breath cycle
- 2. It can be used for dose calculation
- 3. It can be used in registration with CBCT for IGRT
- 4. It can be derived from 4DCT
- 5. It has a well-defined boundary for the diaphragm

Cardiac imaging

Oncology PET/CT dose estimate

Injection dose: 10 mCi per patient 1 mCi = 3.7 x 10⁷ dps = 3.7 x 10⁷ bequerel (Bq)

Radiation dose: 7 mSv from PET 5 to 10 mSv from CT < 0.5 to 1 mSv from ACT

Radiation dose: 3.6 mSv from the environment

The standardized update value measured in PET is <u>not</u> dependent on

37%	1.	Patient height
20%	2.	Patient weight
13%	3.	Injected activity (Bq)
17%	4.	Measured activity concentration (kBq/ml)
13%	5.	Calibration of the PET system

The standardized update value measured in PET is <u>not</u> dependent on

1. Patient height

- 2. Patient weight
- 3. Injected activity (Bq)
- 4. Measured activity concentration (kBq/ml)

Ref: Huang, SC, Anatomy of SUV. Standardized uptake value. Nucl Med Biol, 2000. 27(7): p.643-6

5. Calibration of the PET system