SRT I: Comparison of SRT Techniques

Overview of MLC-based Linac Radiosurgery

Grace Gwe-Ya Kim, Ph.D. DABR

MLC based Linac SRS

- Better conformity for irregular target
- Improved dose homogeneity inside the target
- Comparable dose fall-off outside the target
- Less time-consuming treatment planning
- Shorter treatment time
- Machine is not limited for cranial treatment

MLC based SRS + Frameless

- Patient comfort
- Ease of treatment / workflow
- Comparable positioning accuracy
- Hypofractionated treatments

SRS vs. SRT

- The prescribed dose and dose fractionation in stereotactic dose delivery depend upon:
 - Volume
 - Location
 - Disease

M Linskey et al. J Neurosurg (Suppl 3) 2000;93:90-95

SRS vs. SRT

- Risk factors to developing edema (Meningioma)
 - Dose
 - Volume
 - Location
 - Pre-existing edema etc.

Single-fraction SRS	
Prescribed dose, Gy	15 (11-18)
BED, Gy	83 (40-116)
Volume, mL	3.7 (0.1-47)
Fractionated SRS	
Prescribed dose, Gy	25 (9-40)
Fractionation distribution	
25 Gy in 5 fractions	56
30-35 Gy in 5 fractions	5
18-21 Gy in 3 fractions	6
Other	9
BED, Gy	63 (14-109)
Volume, mL	6.6 (0.6-232)

FIGURE 4. Cumulative incidence of symptomatic posttreatment peritumoral ma following SRS with respect to single fraction vs fractionated treatment (A) t tumor volume >4.9 mL vs \leq 4.9 mL (B).

Gagnon et al., Neurosurgery, (2012), 70 (3) 639-645

SRS vs. SRT

C Brennan et al., IJROBP, 88 (1) 130–136, (2014)

A Phase 2 Trial of Stereotactic Radiosurgery Boost After Surgical Resection for Brain Metastases

Cameron Brennan, MD,^{*,†,£} T. Jonathan Yang, MD,^{‡,£} Patrick Hilden, MS,[§] Zhigang Zhang, PhD,[§] Kelvin Chan, RT(T),[‡] Yoshiya Yamada, MD,[‡] Timothy A. Chan, MD, PhD,^{*,‡} Stella C. Lymberis, MD,[#] Ashwatha Narayana, MD,^{**} Viviane Tabar, MD,[†] Philip H. Gutin, MD,[†] Åse Ballangrud, PhD,^{||} Eric Lis, MD,[¶] and Kathryn Beal, MD[‡]

*Human Oncology and Pathogenesis Program, [†]Department of Neurosurgery, [‡]Department of Radiation Oncology, [§]Department of Epidemiology and Biostatistics, ^{II}Department of Medical Physics, and [¶]Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; [#]Department of Radiation Oncology, New York University Langone Medical Center, New York, New York; and **Department of Radiation Oncology, Greenwich Hospital, Greenwich, Connecticut.

G Minniti et al., IJROBP, 86 (4) 623–629, (2013)

Multidose Stereotactic Radiosurgery (9 Gy \times 3) of the Postoperative Resection Cavity for Treatment of Large Brain Metastases

Giuseppe Minniti, MD, PhD,*^{,§} Vincenzo Esposito, MD,[§] Enrico Clarke, MD,* Claudia Scaringi, MD,* Gaetano Lanzetta, MD,[§] Maurizio Salvati, MD,^{§,||} Antonino Raco, MD,[†] Alessandro Bozzao, MD,[‡] and Riccardo Maurizi Enrici, MD*

*Radiation Oncology Unit, [†]Neurosurgery Unit, and [‡]Neuroradiology Unit, Sant' Andrea Hospital, University "Sapienza," Rome, Italy; [§]Department of Neurological Sciences, Scientific Institute IRCCS Neuromed, Pozzilli, Italy; and ^{II}Neurosurgery Unit, Umberto I Hospital, University "Sapienza," Rome, Italy

• 49 patients

- SRS boost : Significant lower local failure
- Tumors ≥ 3 cm with superficial : higher risk of local failure

• 101 patients

- > 3 cm cavities
- the most effective tx. option for large radioresistant brain met

 V24Gy : radionecrosis

Imaging

- Metastatic
 - MRI with Gadolinium
 - T1 post contrast (thin slice)
 - Small non-enhancing lesions may be seen on T2
 - CT Head with contrast If MRI unavailable
 - May miss small posterior fossa lesions
 - AVM
 - CTA, DSA, MRA
 - Trigeminal Neuralgia
 - T1 post, FIESTA

TG-54

"MRI contains distortions which impede direct correlation with CT data at the level required for SRS"

TG-117

Use of MRI data in Treatment Planning and Stereotactic Procedures – Spatial Accuracy and Quality Control Procedures

(c)

CT

3T T2-FRFSE

B Zhang et al., Phys. Med. Biol. 55 (2010) 6601-6615

Gradient nonlinearity distortion, Siebert et al, ASTRO 2014

2014 cal impact of geometric distortion of stereotactic references. (a) Stereotactic on in MR. (b) Stereotactic reference deviation in sagittal view (subtraction between CT and MR). (c) Displacement of the internal auditory canal (red contour) between CT and MR as a result of stereotactic reference deviation in MR.

IMRS vs. VMAT

JZ Wang et al, Medical Dosimetry 37 (2012) 31-36

MLC leaf width

54 patients, DCA & IMRT techniques No significant diff. 3 mm vs. 5 mm Narrow leaf: Sparing small OARs

NTV90 MLC2.5mm
NTV90 MLC5mm

A-NTV70 MLC2.5m

▲ NTV70 MLC5mm

40

⁴⁵ (b)

Jian-Yue Jin et al., Med. Physics, 32, 405 (2005) Annes Dhabaan et al., JACMP, Vol. 11, No.3 (2010)

10

15

20

Spherical Target Volume (cc)

25

30

10

5

Plan optimization

- Constraints
- Normal Tissue Objective
- Tuning Structures
- MU constraint

- Target structure resolution
- Calc. grid size

Constraints

• TG-101

Sovial	Max	One fraction		Three fraction		Five fraction			
Tissue	vol. (cc)	Threshold dose (Gy)	Max point dose (Gy)	Threshold dose (Gy)	Max point dose (Gy)	Threshold dose (Gy)	Max point dose (Gy)	End point	
Optic pathway	<0.2	8	10	15.3	17.4	23	23	Neuritis	
Cochlea			9		17.1		25	Hearing loss	
Brainstem (not medulla)	<0.5	10	15	18	23.1	23	31	Cranial neuropathy	
Spinal cord and medulla	<0.35 <1.2	10 7	14	18 12.3	21.9	23 14.5	30	Myelitis	

- Lens Max. dose <10 Gy (1 fx)
- Normal Brain V10 < 12 cc or V12 < 10 cc
- Cranial Nerves (fifth, seventh and eighth CN)12.5-15 Gy

(Flicker et al., IJROBP 2004)

Normal brain dose

Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis

Giuseppe Minniti^{1,2*}, Enrico Clarke¹, Gaetano Lanzetta², Mattia Falchetto Osti¹, Guido Trasimeni³, Alessandro Bozzao³, Andrea Romano³ and Riccardo Maurizi Enrici¹

Table 1 Summary of tumor characteristics and treatment parameters

13

parameters			
Parameter	No(%)		
number of patients	206		
median age	62		
sex (F/M)	99/107		
no of lesions per patient			
1 lesion	126 (61%)		
2 lesions	56 (27%)		
3 lesions	24 (12%)		
histology			
lung	106 (51%)		
breast	38 (18%)		
melanoma	34 (17%)		
others	28 (14%)		
tumor location			
frontal	68 (22%)		
parietal	78 (25%)		
temporal	62 (20%)		
cerebellar	43 (14%)		
occipital	45 (15%)		
brainstem	14 (496)		
radiosurgical dose (Gy)			
20	118 (38%)		
18	120 39%)		
15-16	72 (23%)		

 V10 and V12 volumes greater than 4.5-7.7 and 6.0-10.9 cc carry >10% risk of symptomatic radiation necrosis , respectively

range

G Minniti et al, Radiation Oncology 2011, 6:48

Multi-metastases

0.5

	Group	Median survival (95% Cl)	overall , months)	HR (95% CI)	p va	lue
	— 1 tumour — 2-4 tumours	13·9 (12 10·8 (9·	·0–15·6) 4–12·4)	0·76 (0·66–0·88 Reference) 0.00	004
		10.8 (9.1	1–12·7)	0.97 (0.81–1.18)	0.78	3
	100 80					
	rvival (%))-	K			
	overal su)_	Z	Land -	~~~	
	20)_				
	C		12 1	la 24 3	0 36	42
	C	0 6 Time	12 1 after stereot	L8 24 3 cactic radiosurgery	0 36 / (months)	42
	C	1	12 12 after stereot 1 tumour (A) (n=455)	18 24 3 actic radiosurgery 2-4 tumours (B) (n=531)	0 36 / (months) 5-10 tumours (C) (n=208)	42 p val (B vs
ai	C To ntained neurocognitive fr	tal (n=1194)	12 1 e after stereot 1 tumour (A) (n=455)	L8 24 3 cactic radiosurgery 2-4 tumours (B) (n=531)	0 36 / (months) 5-10 tumours (C) (n=208)	42 p val (B vs
ai	C Ta ntained neurocognitive fr 4 months after SRS 6	0 6 Time vtal (n=1194) unction: v23/662 (94%)	12 1 2 after stereot 1 tumour (A) (n=455) 243/256 (95%	L8 24 3 cactic radiosurgery 2-4 tumours (B) (n=531) 6) 263/284 (93%)	0 36 (months) 5-10 tumours (C) (n=208) 117/122 (96%)	42 p val (B vs 0-27
ai	To ntained neurocognitive f 4 months after SRS 6 2 months after SRS 3	0 6 Time rtal (n=1194) unction‡ 223/662 (94%) 133/366 (91%)	12 1 2 after stereot 1 tumour (A) (n=455) 243/256 (95% 141/154 (92%	L8 24 3 cactic radiosurgery 2-4 tumours (B) (n=531) 6) 263/284 (93%) 6) 139/152 (91%)	0 36 7 (months) 5-10 tumours (C) (n=208) 117/122 (96%) 53/60 (88%)	42 p val (B vs 0.27 0.60
ai 12 24	Tc ntained neurocognitive fr 4 months after SRS 6 2 months after SRS 3 4 months after SRS 1	ntal (n=1194) vtal (n=1194) v23/662 (94%) i33/366 (91%) .20/128 (94%)	12 1 a after stereot 1 tumour (A) (n=455) 243/256 (95% 141/154 (92% 55/60 (92%)	L8 24 3 cactic radiosurgery 2-4 tumours (B) (n=531) (b) 263/284 (93%) (c) 139/152 (91%) (c) 47/48 (98%)	0 36 7 (months) 5-10 tumours (C) (n=208) 117/122 (96%) 53/60 (88%) 18/20 (90%)	42 p val (B vs 0.27 0.60 0.20

Data are number of patients with one or more adverse event (%), unless otherwise specified. MMSE=Mini-Mental State Examination. SRS=stereotactic radiosurgery. *Graded according to Common Terminology Criteria for Adverse Events,

M Yamamoto et al., Lancet Oncol, March 10, 2014

patients who completed MMSE at that timepoint.⁵

Table 6: Adverse events and maintenance of neurocognitive function

L Ma et al., Int. J CARS, 20 April 2014 L Cozzi et al., Rad Onc., 9:118 2014 Number of Target (N)

14

Tuning Structures

- Individual target(s) (not the composite PTV_total): lower = 100% of the target to receive 102% of prescription, no upper constraint
- Inner control max dose = 98% of prescription dose
- Middle control max dose = 50% of prescription
- Outer control max dose = 40% of prescription

Table 3	Dosimetric indices	(15 patients with 1-5 targets)				
Patient	Target(s)	Target volume (cm ³)	Conformity index	Homogeneity index	Gradient index ^a	
Mean		13.17	1.12	1.44	3.34	
Standard d	leviation	13.81	0.13	0.11	0.42	
Range		0.43-44.68		1.19-1.65	2.53-4.13	

^a Gradient index (GI) is calculated on per-plan basis, with GI = volume of 50% isodose line divided by the volume of the 100% isodose line.

G. Clark et al., Practical Radiation Oncology (2012) 2, 306–313

Plan optimization – MU

Surface Imaging System

Stereo photogrammetry

- 3 cameras & visible light projector
- Reference image
 - Contours from DICOMRT
 - Previous captured image
- Registration algorithm
 - Minimize distance between reference image & real-time surface
 - Rotations & translations

Clinical Work Flow

Patient Setup

Capture New Reference

- kV/kV match to check for rotations (e.g., pitch)
- CBCT-indicated shifts are used to put patient in their final Tx position
- New reference image is captured with AlignRT (zero offsets)
- Monitor patient's position during treatment
- Discontinue treatment and reposition if offsets exceed ~1 mm
- Couch angle changed in AlignRT for beams utilizing couch rotations

Quality Assurance

- **Daily QA** Cal. verification
- Monthly QA
 Camera calibation
- Isocenter Cal.
 Allows AlignRT isocenter to be calibrated to MV isocenter

Clinical Results

• 44 patients

- 115 intracranial metastatic lesions
- Median follow-up of 4.7 months
 - 1 year actuarial local control rate was 84%
 - 95% confidence interval: 69-99%

RESEARCH-HUMAN-CLINICAL STUDIES

Pan et al., Neurosurgery, pp. 844-852, October 2012

Frameless, Real-Time, Surface Imaging-Guided Radiosurgery: Clinical Outcomes for Brain Metastases

Clinical Results

Comparison of local control & survival for retrospective studies of brain metastases treated with radiosurgery

Treatment System	Pts (n)	Actuarial 1y LC* (%)	Actuarial 1y Survival (%)
Frame-based linac	80	89	33
Frame-based Gamma Knife	205	71	37††
Frameless linac	53	80	44
Frameless linac	65	76	40
Frameless, surface-imaging guided linac	44	84	37

*LC: local control; [†] -: not reported; ^{††}estimated from Kaplan-Meier curve

Acknowledgements

- Todd Pawlicki, PhD
- Mariel Conell, CMD
- Jane Uhl, CMD
- Ryan Manger, PhD
- Kevin Murphy, MD
- Jona Hattangadi, MD
- Parag Sanghvi, MD
- Clark Chen MD PhD