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Outline  

1. Optimality and uncertainty  

2. Robust optimization: better than margins 

3. What does all that mean in practice? 

1. Optimality and Uncertainty 

The dilemma: 

• We want the optimal treatment plan for 
our patients! 

• But, how can we design the optimal plan 
when the underlying parameters are 
uncertain?  
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Factors involved in volumetric uncertainty in 
target volume delineation 

 

Hamilton & Ebert, Clin. Oncol 17: 456-464; 2005 

These involve physics 
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Decision making by ROs 

The “normal” way to deal with this: 
Use margins 

• Pretend that we don’t actually want to 
treat the tumor but the PTV, as uniformly 
and conformal as possible 

ICRU 62 

Margins to counteract uncertainties 

• Large volumes of normal tissue irradiated 

• Based on assumption that patient moves in a 
static “dose cloud” – not always justified 

• Issues with overlap of margins (PTV-PRV)  
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Robust optimization = a better way to  
deal with optimality under uncertainty 

• We want to make a treatment plan as good 
as possible and  at the same time protect it 
against uncertainties 

• Robustness = immunity to uncertainty 

• Robust optimization: bringing robustness 
and optimality together 

• How can we do that? 

Robust optimization, the approach: 

• Consider different scenarios of treatment delivery 
(instances of geometry of patient positions, organ 
motion, range over- or undershoot for protons, ..) 

Photon Treatment Planning Collaborative Working Group. IJROBP 21:91-107; 1991 

Para-aortic nodes – junction 

Nominal “Upper bound” 
Misregistered by 1 cm 

“Lower bound” 
Misregistered by 1 cm 
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IMPT example: chordoma 

29 different scenarios: 

• Nominal scenario (1) 

• 3 mm setup error ±x, ±y, ±z (6) 

• 3 mm setup error (diagonal) (20) 

• 5% range error, over- and undershoot (2) 

Planning tradeoff, nominal case 

CTV underdose (Gy) 
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Plans of OPT (K=1) 
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Plan degradation 

CTV underdose (Gy) 
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Plans of OPT (K=1) 

Plans of OPT (K=1) 
evaluated at K=29 
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Robust optimization, the approach: 

• Consider different scenarios of treatment delivery 
(instances of geometry of patient positions, organ 
motion, range over- or undershoot for protons, ..) 

1. The worst case approach: make sure that 
constraints are fulfilled in all scenarios, and that 
we obtain the best plan in the worst case 
(“minimax” ). 

Robust solution (worst case, minimax) 

CTV underdose (Gy) 
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Plans of OPT (K=1) 

Plans of OPT (K=1) 
evaluated at K=29 

Plans of OPT (K=29) 

Plans of OPT (K=29) 
evaluated at K=1 

P1 

P1 

P2 

Robust optimization, the approach: 

• Consider different scenarios of treatment delivery 
(instances of geometry of patient positions, organ 
motion, range over- or undershoot for protons, ..) 

1. The worst case approach: make sure that 
constraints are fulfilled in all scenarios, and that 
we obtain the best plan in the worst case 
(“minimax”). 

2. “Stochastic programming”: describe 
uncertainties with random variables, assume 
probability density functions (pdf), and optimize 
expected value of the objective function. 
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The price of robustness  
non-robust (Plan A) and robust (Plan B) 

Price of robustness! 

Outline  

1. Optimality and uncertainty  ✓  

2. Robust optimization: better than margins 

3. What does all that mean in practice? 

Example: setup error (1D) 

• Error scenarios defined by shifting to the left or 
right in steps of 1mm.  

• Random error: 32 random shifts (for 32 fractions) 
sampled from a Gaussian with a mean of zero and 
a set standard deviation σRand  

• Systematic error: single shift with standard 
deviation σSys added to the random shift above 
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Example: setup error (1D) 

(10 mm)2 

Observations random/systematic errors: 

• Random errors require smaller margins than 
systematic errors -> van Herk margin recipes.  

• Robust optimization leads to beam “horns” 
instead of margins.   

IMPT plan, 3 fields 
spinal cord target 
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Sensitivity analysis 

Stochastic programming 

Target dose  
deviation 

Spinal cord 
dose 

healthy  
tissue dose 

3 scenarios: 
• Scenario 1:  Nominal scenario, p1 = 0.5 

• Scenario 2:  5 mm range overshoot, p2  = 0.25 

• Scenario 3:  5 mm range undershoot, p3  = 0.25 

 
 

Robust IMPT plan 
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Sensitivity analysis II (robust plan) 

Observations protons: 

• Proton range errors in IMPT cannot effectively be 
dealt with through margins.  

• Here we absolutely need robust optimization. 

 

 

• More on robust optimization for protons: 
– IMPT session, talk by Jan Unkelbach et al.  

Thursday, 7:30-9:30AM, Ballroom E  

 

Vision for the future 

• No (PTV) margins in treatment planning  

• Instead, quantify motion and uncertainties, 
and let the planning system find a robust 
solution. This may be a margin-like solution 
but could also be an advanced intensity-
modulated solution (e.g., “horns”). 
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Outline  

1. Optimality and uncertainty  ✓  

2. Robust optimization: better than margins ✓  

3. What does all that mean in practice? 

Implementation in RayStation 4.5 

User interface 

Setup uncertainty 

Range uncertainty 

Implementation in RayStation 4.5 
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Robust optimization 
Take-home-messages: 
• Uncertainty -> Different scenarios 
• Robust optimization done in two ways:  

1. optimize worst scenario (minimax) 
2. stochastic programming (optimization of 

expected outcome)  

• There is always a price of robustness. 
• Robust optimization can lead to new types of 

fault-tolerant dose distributions, e.g. beam 
“horns” for motion, and robust proton dose 
distributions. 

• Robust optimization is coming to you  
(i.e., to your planning system). 

Uncertainty analysis and robustness –  
30 year old dreams come true… 

Med Phys 12(5):608-612, 1985 
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Planning objectives and constraints 

Learning objective 

• To highlight the basic ideas and clinical 
potential of robust optimization 
procedures to generate optimal treatment 
plans that are not severely affected by 
uncertainties. 

Uncertainty and Motion 

• Motion does not necessarily imply uncertainty 

– If motion is perfectly known, then there is no 
uncertainty. This case is “easy” to deal with. 

• But, when there is motion (e.g., breathing), 
there are typically more potential sources of 
uncertainty:  

– Uncertainties in the motion characteristics such as 
frequency, amplitude, shape of trajectory, 
irregularity of the motion.  
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Uncertainty model for de-blurring method 

• PDF for regular 
breathing 

• Uncertain motion may 
lead to many PDFs 

p 

Motion 

PDF 

Displacement or phase Displacement or phase 

nominal PDF  
p(x) 

Uncertainty set – PDF and “error bars”  

position (phase) (x) 

Tim Chan et al:  Phys Med Biol 51:2567 (2006)  

p(x) 

p(x) 

realized pdf 
p(x)  ~ 
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Observations re. breathing motion: 

• If we know nothing about the motion but the 
rough amplitude, adding margins is the best we 
can do.  

• If we know more, such as the breathing PDF, we 
can do much better with robust optimization. 


