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1. Optimality and uncertainty
2. Robust optimization: better than margins
3. What does all that mean in practice?

1. Optimality and Uncertainty

The dilemma:

¢ We want the optimal treatment plan for
our patients!

¢ But, how can we design the optimal plan

when the underlying parameters are
uncertain?




Factors involved in volumetric uncertainty in
target volume delineation

== Decision making by ROs
OThese involve physics
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The “norma
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way to deal with this:
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e Pretend that we don’t actually want to
treat the tumor but the PTV, as uniformly
and conformal as possible
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Margins to counteract uncertainties




Robust optimization = a better way to
deal with optimality under uncertainty

¢ We want to make a treatment plan as good
as possible and at the same time protect it
against uncertainties

e Robustness = immunity to uncertainty

e Robust optimization: bringing robustness
and optimality together

e How can we do that?

Robust optimization, the approach:

e Consider different scenarios of treatment delivery
(instances of geometry of patient positions, organ
motion, range over- or undershoot for protons, ..)
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IMPT example: chordoma

29 different scenarios:
e Nominal scenario (1)

* 3 mm setup error %x, ty, +z (6)
* 3 mm setup error (diagonal) (20)
* 5% range error, over- and undershoot (2)

Planning tradeoff, nominal case
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Robust optimization, the approach:

¢ Consider different scenarios of treatment delivery
(instances of geometry of patient positions, organ
motion, range over- or undershoot for protons, ..)

1. The worst case approach: make sure that
constraints are fulfilled in all scenarios, and that
we obtain the best plan in the worst case
(“minimax” ).

Robust solution (worst case, minimax)
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Robust optimization, the approach:

¢ Consider different scenarios of treatment delivery
(instances of geometry of patient positions, organ
motion, range over- or undershoot for protons, ..)

1. The worst case approach: make sure that
constraints are fulfilled in all scenarios, and that
we obtain the best plan in the worst case

“minimax”).

2. “Stochastic programming”: describe
uncertainties with random variables, assume
probability density functions (pdf), and optimize
expected value of the objective function.
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The price of robustness
non-robust (Plan A) and robust (Plan B)

a) Plan A i i b) Plan B ™
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Price of robustness!
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Example: setup error (1D)

Error scenarios defined by shifting to the left or

right in steps of Imm.

e Random error: 32 random shifts (for 32 fractions)
sampled from a Gaussian with a mean of zero and
a set standard deviation oy, 4

¢ Systematic error: single shift with standard

deviation o, added to the random shift above




Example: setup error (1D)
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Observations random/systematic errors:

e Random errors require smaller margins than
systematic errors -> van Herk margin recipes.

¢ Robust optimization leads to beam “horns”
instead of margins.

IMPT plan, 3 fields

target spinal cord




Sensitivity analysis

(¢) 5mm undershoot

Stochastic programming
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3 scenarios:

* Scenario 1: Nominal scenario, p; =0.5

* Scenario 2: 5 mm range overshoot, p, =0.25
* Scenario 3: 5 mm range undershoot, p; =0.25

Robust IMPT plan




Sensitivity analysis |l (robust plan)

(a) Nominal dose (b) 5mm overshoot () 5mm undershoot
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Observations protons:

20-40
10-60
60-70
70-80
80-90
90-95
95-105
105-110
110-120
5120

* Proton range errors in IMPT cannot effectively be
dealt with through margins.

e Here we absolutely need robust optimization.

e More on robust optimization for protons:

— IMPT session, talk by Jan Unkelbach et al.
Thursday, 7:30-9:30AM, Ballroom E

Vision for the future

¢ No (PTV) margins in treatment planning

¢ Instead, quantify motion and uncertainties,
and let the planning system find a robust
solution. This may be a margin-like solution
but could also be an advanced intensity-
modulated solution (e.g., “horns”).
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Implementation in RayStation 4.5

Robustness Settings

User interface

Setup uncertainty

Range uncertainty

Implementation in RayStation 4.5
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Robust optimization

Take-home-messages:

¢ Uncertainty -> Different scenarios

¢ Robust optimization done in two ways:
1. optimize worst scenario (minimax)

2. stochastic programming (optimization of
expected outcome)

¢ There is always a price of robustness.

¢ Robust optimization can lead to new types of
fault-tolerant dose distributions, e.g. beam
“horns” for motion, and robust proton dose
distributions.

¢ Robust optimization is coming to you
(i.e., to your planning system).

Uncertainty analysis and robustness —
30 year old dreams come true...

Calculation of the uncertainty in the dose delivered during radiation therapy®

Michael Goitein
Diaision of Biophysics, D R e veral Hospitai Cancer
Center, Basion, Massachusetts 02114 and Harvard Medical School

(Received 4 February 1985; accepted for publication 10 May 1985)

There fs, inevitably, uncertainty in our knowledge of the dose at any point within an irradiated
patient. A technique is presented for estimating this uncertainty by performing three parallel
calculations, one using nominal values and the others extreme values of the paramelers upon
which the dose depends. Such calculations can be made with almost any algorithm for calculating
dose. They result in an estimate, at some specified confidence level which is determined by the
data used, of the range of dose likely at any point. Such calculations should help therapists to avert
over- or underdosage which might not be evident in conventional calculations of the nominal
dose

Med Phys 12(5):608—612
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Planning objectives and constraints

Chordoma (Rx = 78 Gy)

Structures Type Scenarios  Bound (in Gy)/Direction
Objectives
CTV Underdose ramp (" =Rx)  All Minimize
Brainstem, spinal cord  Max All Minimize
Constraints
CcTvV Min Nominal =
CTV Max Nominal <
R/L cochlea Max 9 <
R/L parotid Mean 9 <
@ g

Learning objective

¢ To highlight the basic ideas and clinical
potential of robust optimization
procedures to generate optimal treatment
plans that are not severely affected by
uncertainties.

Uncertainty and Motion

¢ Motion does not necessarily imply uncertainty
— If motion is perfectly known, then there is no
uncertainty. This case is “easy” to deal with.
e But, when there is motion (e.g., breathing),
there are typically more potential sources of
uncertainty:

— Uncertainties in the motion characteristics such as
frequency, amplitude, shape of trajectory,
irregularity of the motion.
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Uncertainty model for de-blurring method

* PDF for regular ¢ Uncertain motion may
breathing lead to many PDFs
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Uncertainty set — PDF and “error bars”

rNeaIized pdf
p(x)

position (phase) (x)

Tim Chan et al: Phys Med Biol 51:2567 (2006)
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Observations re. breathing motion:

¢ |f we know nothing about the motion but the
rough amplitude, adding margins is the best we
can do.

¢ |f we know more, such as the breathing PDF, we
can do much better with robust optimization.
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