Communication of Uncertainties in Radiation Therapy

Ben Mijnheer

Disclosure

The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital has a research cooperation with Elekta concerning the development of cone-beam CT and EPID dosimetry software

Communication of Uncertainties in Radiation Therapy

Learning objective: To describe methods of uncertainty communication and display
Communication of Uncertainties in Radiation Therapy

Learning objective: To describe methods of uncertainty communication and display

• in target volume delineation
• in treatment planning
• in treatment delivery
Radiation oncologist to physicist: What dose will this patient receive?

Physicist: 60 Gy with an uncertainty of ±3.5%
Communication of Uncertainties in Radiation Therapy

Radiation oncologist to physicist: What dose will this patient receive?
Physicist: 60 Gy with an uncertainty of ±3.5%
Radiation oncologist: I don’t want any uncertainty, just 60 Gy to the target volume

Communication of Uncertainties in Radiation Therapy

• in target volume delineation

Intra- and inter-observer variability in contouring on CT

(Leunens et al., Radiat Ther Oncol 29: 169, 1993)
Delineation variation: CT versus CT + PET

CT (T2N2) CT + PET (T2N1)
SD 7.5 mm SD 3.5 mm
(Steenbakkers et al., IJROBP, 64, 435-448, 2006)

Delineation variation: CT versus CT + PET

CT (T2N2) CT + PET (T2N1)
SD 7.5 mm SD 3.5 mm
(Steenbakkers et al., IJROBP, 64, 435-448, 2006)

Delineation variation: CT versus MRI and PET

Delineation of a GTV can vary according to the diagnostic modality (From ICRU Report 83)
What can be done to reduce target delineation variation?

- A correct identification of the macroscopic extension of a tumour requires a long training of a radiation oncologist, and an awareness of the specific abilities of a given imaging method
- Image quality plays also an important role (slice thickness, patient motion during acquisition, equipment characteristics...)
- Medical physicists and radiation oncologists should communicate about the possibilities and limitations of the various imaging tools available in their department
Communication of Uncertainties in Radiation Therapy

- in target volume delineation
- in treatment planning

Comparison of isodose distributions

Clinical implementation of a more advanced dose calculation algorithm

- When introducing a more advanced (type b) dose calculation algorithm, e.g. convolution-superposition, instead of a (type a), e.g. pencil-beam algorithm, considerable lower dose in the PTV and a somewhat higher dose in most of the lung becomes visible for the same beam setup and number of MUs
Clinical implementation of a more advanced dose calculation algorithm

• When introducing a more advanced (type b) dose calculation algorithm, e.g., convolution-superposition, instead of a (type a), e.g., pencil-beam algorithm, considerable lower dose in the PTV and a somewhat higher dose in most of the lung becomes visible for the same beam setup and number of MUs.

• Recalculate some old plans with the new algorithm for various approaches; e.g., coverage of the PTV by 95% (i.e., using larger field sizes) or by 90% at the lung side.

• Optimize plans for the same constraints on PTV and/or OAR (lung) using the new approaches.

Discussion is needed between physicists and radiation oncologists to fully understand the differences when introducing a more advanced dose calculation algorithm.

Clinical implementation of a more advanced dose calculation algorithm

• When introducing a more advanced (type b) dose calculation algorithm, e.g., convolution-superposition, instead of a (type a), e.g., pencil-beam algorithm, considerable lower dose in the PTV and a somewhat higher dose in most of the lung becomes visible for the same beam setup and number of MUs.

• Recalculate some old plans with the new algorithm for various approaches; e.g., coverage of the PTV by 95% (i.e., using larger field sizes) or by 90% at the lung side.

• Optimize plans for the same constraints on PTV and/or OAR (lung) using the new approaches.
Effect of type of geometric uncertainty on dose in the CTV

CTV to PTV margin recipes

To cover 99% of the CTV with 90% of the specified dose:

\[\text{PTV margin} = 2.0 \Sigma + 0.7 \sigma \]
(Stroom et al., 1999)

To cover the CTV for 90% of the patients within the 95% isodose surface:

\[\text{PTV margin} = 2.5 \Sigma + 0.7 \sigma \]
(van Herk et al., 2000)

\(\Sigma = \text{SD of all systematic uncertainties combined quadratically} \)

\(\sigma = \text{SD of all random uncertainties combined quadratically} \)
PTV margins

- CTV-PTV margin recipes are population based and do not cover the CTV in all patients.
- PTV margins are designed to cover geometrical uncertainties, but they should also cover microscopic disease.
- When using a GTV-CTV margin, there still is a finite chance that some patients of a population of "identical" patients have a microscopic extension outside this margin.
PTV margins

- CTV-PTV margin recipes are population based and do not cover the CTV in all patients
- PTV margins are designed to cover geometrical uncertainties, but not to cover microscopic extension
- When using a GTV-CTV margin, there is still a finite chance that some patients have a microscopic extension outside this margin
- Reducing margins after introducing IGRT may therefore lead to poorer outcome and should be done with utmost care

Discuss margins with the whole team!

Probabilistic treatment planning

- The PTV is a surrogate for estimating the position of the CTV
- Probabilistic treatment planning uses modeling of all geometric uncertainties in the position of the CTV and provides assessment of the most likely dose distribution, e.g. the 90% probability of a minimum dose in the CTV
Probabilistic treatment planning

- The PTV is a surrogate for estimating the position of the CTV
- Probabilistic treatment planning uses modeling of all geometric uncertainties in the position of the CTV and provides assessment of the most likely dose distribution, e.g. the 90% probability of a minimum dose in the CTV
- A (Monte Carlo) mathematical model is often employed to simulate and evaluate many possible treatments

Results of probabilistic treatment planning of 56 prostate VMAT treatments

- Stars: Minimum dose in PTV from TPS (Dplan)
- Circles: Minimum dose in CTV from probabilistic planning (Dexpected)
- Delivered dose: Actual dose recalculated from CBCT data

Probabilistic treatment planning leads to a better prediction of the delivered dose compared to conventional planning

- Probabilistic treatment planning is still a research tool; commercial software is not (yet) available
Probabilistic treatment planning

- The PTV is a surrogate for estimating the position of the CTV
- Probabilistic treatment planning uses modeling of all geometric uncertainties in the position of the CTV and provides assessment of the most likely dose distribution, e.g. the 90% probability of a minimum dose in the CTV
- A (Monte Carlo) mathematical model is often employed to simulate and evaluate many possible treatments
- Probabilistic treatment planning is still a research tool; commercial software is not (yet) available
- Patient-specific evaluation is performed, but based on population-based Σ and σ values

Another approach: worst case scenario

- Instead of using a population-based uncertainty calculation, every single case is evaluated separately
- If the variation in the PTV/OAR position in the beginning of a specific patient treatment is known, design a worst case scenario to decide if the treatment can be continued

Example:
- Lung cancer treatment using 24x 2.75Gy on the lymph nodes and 3x18Gy on the tumor in the second week
- Measure the first week with CBCT the change in relative position of the tumor and the lymph nodes
- Generate a worst case plan
- Discuss with the radiation oncologist if the dose in the OARs (PRVs) is still acceptable
Another approach: worst case scenario

- Instead of using a population-based uncertainty calculation, every single case is evaluated separately
- If the variation in the PTV/OAR position in the beginning of a specific patient treatment is known, design a worst case scenario to decide if the treatment can be continued
- Example:
 - lung cancer treatment using 24x 2.75Gy on the lymph nodes and 3x18Gy on the tumor in the second week
 - measure the first week with CBCT the change in relative position of the tumor and the lymph nodes
 - generate a worst case plan

Hybrid plan of a lung cancer treatment
3x18Gy on tumor and 24x2.75Gy on lymph nodes

No shift

5 mm shift of tumor relative to lymph nodes
Another approach: worst case scenario

- Instead of using a population-based uncertainty calculation, every single case is evaluated separately.

- If the uncertainty in the PTV/OAR position in the beginning of a specific patient treatment is known, design a worst case scenario to decide if the treatment can be continued.

- Example:
 - Lung cancer treatment using 24x2.75Gy on the lymph nodes and 3x18Gy on the tumor in the second week.
 - Measure the first week with CBCT the change in relative position of the tumor and the lymph nodes.
 - Generate a worst case plan.
 - The dosimetrist and/or physicist should discuss with the radiation oncologist if the dose in the OAR(s) is still acceptable.

Communication of Uncertainties in Radiation Therapy

- In target volume delineation.

- In treatment planning.

- In treatment delivery.

EPID-based in vivo 3D dose verification using a back-projection model

1) Calculate plan
2) Measure EPID dose
3) Reconstruct dose in multiple planes
4) Compare planned and reconstructed 3D dose distribution.
Lung step & shoot IMRT:

EPID DOSIMETRY REPORT

Patient name: [redacted]
Medical Record No.: [redacted]
Plan UPI: [redacted]

Automatic classification

<table>
<thead>
<tr>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
<th>No. 6</th>
<th>Plan</th>
<th>UPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fully automated dosimetry report generation showing results of 3D gamma evaluation and the dose at the isocenter.

Lung step & shoot IMRT: recovery from atelectasis

Based on the in vivo dosimetry and CBCT result the physicist and radiation oncologist should discuss if replanning is necessary.

Anatomical changes during a series of patient treatments: the traffic light protocol

- Uncertainties in dose delivery arise when anatomical changes, such as contour variation, tumor shrinkage or tumor growth, occur during the course of a treatment.
Anatomical changes during a series of patient treatments: the traffic light protocol

• Uncertainties in dose delivery arise when anatomical changes, such as contour variation, tumor shrinkage or tumor growth, occur during the course of a treatment.

• CBCT scans are often made to verify and correct patient setup.

• The information available in a CBCT scan can also be used to observe and quantify changes in anatomy.

• By using a “traffic light protocol” therapists contact radiation oncologists depending on the severity of change.
Anatomical changes during a series of patient treatments: the traffic light protocol

• Uncertainties in dose delivery arise when anatomical changes, such as contour variation, tumor shrinkage or tumor growth, occur during the course of a treatment

• CBCT scans are often made to verify and correct patient setup

• The information available in a CBCT scan can also be used to observe and quantify changes in anatomy

• By using a "traffic light protocol" therapists contact radiation oncologists depending on the severity of change

Action level 1	Action before next fraction	Communication by telephone
Action level 2	No immediate action	Communication by email
Action level 3	No action	Communication by email

Dosimetric effects of weight loss or gain during IMRT and VMAT for prostate cancer

The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT.

(Pair et al., Medical Dosimetry 38, 251–254, 2013)
Final remarks

• Reducing uncertainties in radiation therapy needs the expertise from radiation oncologists, physicists, dosimetrists and therapists

• Talk to each other and discuss all (difficult) cases

• Be pragmatic; the vast majority of our treatments are “correctly” delivered if a comprehensive QA program is performed
Final remarks

• Reducing uncertainties in radiation therapy needs the expertise from radiation oncologists, physicists, dosimetrists and therapists

• Talk to each other and discuss all (difficult) cases

• Be pragmatic: the vast majority of our treatments are “correctly” delivered if a comprehensive QA program is performed

• The challenge is to select those cases where knowledge of the uncertainty is of paramount importance for the optimal treatment of that particular patient

Many thanks for your attention

and special thanks to

Sanne Conijn
Eugène Damen
Tommy Knöös
Angela Tijhuis
Tomas Muller
Marcel van Herk
Marnix Witte

for borrowing some of their slides