Novel PET Imaging for Proton Therapy Applications

Yiping Shao
Department of Imaging Physics
The University of Texas M.D. Anderson Cancer Center

Acknowledgement

Lab members and Collaborators
X Sun, K Lou, XR Zhu, D Mrkovic; F Poenisich, D Grosshans
Department of Imaging Physics
Department of Radiation Physics
Department of Radiation Oncology
The University of Texas M.D. Anderson Cancer Center
Electrical Engineering and Computer Sciences
Rice University

Financial support
Cancer Prevention and Research Institute of Texas RP120326

Technical support
Proton Therapy Center at MD Anderson Cancer Center

Proton therapy & beam range measurement

Mono energetic beam Therapy targeting
PET imaging for beam-range verification
Inter- and intra-treatment beam range (BR) measurement

Challenges of on-line BR measurement with PET

Count dependency of BR measurement
Major factors that influence the beam range measurement

- Energy
- Proton radiation
- Flux
- Material size
- Phantom
- Composition pattern
- Sensitivity
- Acquisition
- Counts
- Resolution
- Stability
- Data correction
- AR measurement
- Neutron radiation
- Image reconstruction
- Post-process
- VOI selection
- Axial distribution

Preliminary phantom study:
Shao, etc. PMB 59 (2014) pp. 3373-3388

Prototype PET system
(with DOI)

(without DOI)

New detector components and development

- Photon sensors
- Solid-state PM
- Scintillator and array
 - X: 0.9
 - Y: 0.9
 - Z: 0.9
- Detector module
 - DOI measurable

...
In-beam PET imaging - experiment setup

- 9 acquisitions
- 20° detector rotation/acq.
- Sensitivity (at one acq.): ~2%
- Image resolution: ~2 mm
- 5 mm collimated beam (~180 MeV)
- 800 MU (~4 fractionated dose)
Locate activity peak

16 direct-crystal planes in the axial direction

Activity peak outside FOV

Position for range acquisition

16 direct-crystal planes in the axial direction

"PET performance" and "Activity range" acquisitions
“PET performance” and “Activity range” acquisitions

Rotational detectors

PMMA

PET performance and Activity range acquisitions

Rotational detectors

PMMA

“PET performance” and “Activity range” acquisitions

Rotational detectors

PMMA

“PET performance” and “Activity range” acquisitions

Rotational detectors

PMMA

“PET performance” and “Activity range” acquisitions

Rotational detectors

PMMA

“PET performance” and “Activity range” acquisitions

Rotational detectors

PMMA
“PET performance monitoring” and “Activity range” acquisitions

Data from monitoring-acquisition (Na-22 disk-source)

Images of Na-22 disk-source (before, during, and after proton radiations)
Impact of image by Neutron Irradiations

Data from range-acquisition (coincident counts)
Beam: 180 MeV (800 MU)
~50 beam spills
0.5 sec spill time
1.5 sec inter-spill time
~2 min in-beam & 5 min post-beam acquisition

Energy spectra (range-acquisition)
Full-tomographic image (MLEM)

In-beam data

Post-beam

Partial tomographic imaging with limited-angle recon

Rotational detectors

PMMA

Partial-tomographic image (MLEM)

In-beam data

Post-beam data
Comparison of measured and simulated axial profiles

Count-depth distribution (direct projection data)

Summary of measured and simulated activity-range
Impact factors to the accuracy of activity-range measurement

Reconstruction iteration numbers

Size of ROI

Data with number of spills

Range vs number of beam spills
Summary
- Preliminary study
- Specific phantom imaging setup
- Fast converging of BR measurement
- Tangible initial result
- … can be achieved in clinical?

More researches on on-line BR measurement

Count dependency of BR measurement

Impact of image smooth
5mm DOI

No DOI

PET detector and system development

Thank you!
<table>
<thead>
<tr>
<th>Post-beam Detection Time (s)</th>
<th>Activity Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 50 100 150 200 250 300</td>
<td>0 1 2 3 4 5 6 7 x 10</td>
</tr>
</tbody>
</table>

Monte Carlo simulated images

Acquired images
Latest PET detector and system development