Novel PET Imaging for Proton Therapy Applications

Yiping Shao

Department of Imaging Physics

The University of Texas M.D. Anderson Cancer Center

AAPM Imaging Symposium Austin, Texas, 7/24/2014

Acknowledgement

Lab members and Collaborators

X Sun, K Lou, XR Zhu, D Mrikovic, F Poenisch, D Grosshans

Department of Imaging Physics Department of Radiation Physics Department of Radiation Oncology The University of Texas M.D. Anderson Cancer Center

> Electrical Engineering and Computer Sciences Rice University

Financial support

Cancer Prevention and Research Institute of Texas RP120326

Technical support

Proton Therapy Center at MD Anderson Cancer Center

"PET performance" and "Activity range" acquisitions

Data from monitoring-acquisition (Na-22 disk-source)																													
500 250		1000	500 250 1500	Ĵ	0 1000	252 252 0 1500	» •	00 100	0 12		Å	000 1	2500		0 900	0 150	2000 2000 0 0 0	Å	1000 1	2500 500 °	Á	1000	2500 1500 °	<u>,</u>	0 100	25		500 100	0 1500
400		1000	400 400 1500	پ	0 1000	400 400 0 1500	»	00 100	0 1500		Å	000 1		ļ	10 900	0 150		٠ ۵	1000 1	0000 0000	<u> </u>	1000	4000 4000 1500	Ņ	900	40 -40 0 1500		500 100	0 1500
400		1000	400 200 1500	<u>ل</u>	0 1000	200	»	00 100	2		Å	000 1	2000	ļ	0 900	0 150		Ň	1000 1	000 2000	<u> </u>	1000	4000 2000 1500	1	900	20		500 100	0 1500
550	•	before irradiation expt during irradiation expt after irradiation expt							n (%)	40	• before irradi duing irradia after irradiat				iation ation e	tion expt ion expt on expt			•		6x10 ⁵ ⊨ u ch 5x10 ⁵		u dur		bear	n	•	after	er beam
ioitisod Asaqotoric	• 	•	••	• •	•	•	•	•	Energy resolutio	20	• •	8 0	5 0	8 0	•	•	•	•	•	Counte accuited t	4x1	of _	•	•	•	•	•	•	
450	0	Ċ	40 Detect	80 or vie	rw (d	120 legree	1 e)	60		10	0		40 Dete	ecto	80 r vie	w (d	120 legre	e)	160		3x1	05)	40 De	tecti	80 or vie	ew (a	120 ngle)	160

Count-depth distribution (direct projection data) In-beam data Post-beam data 12 e det tor view (0°) detector view (0°) 8.0 Normalized counts 0.8 0.6 Normal 0.4 0.2 0.2 1,211 0 170 0 175 180 185 180 185 190 Phantom depth (mm) 190 195 Phantom depth (mm)

Thank you!

