Overview of CyberKnife Radiosurgery

Martina Descovich, Ph.D

University Of California San Francisco
Learning Objectives

- Review operating principles of CyberKnife
 - System components
 - Target tracking
 - Treatment delivery
- Demonstrate how to create a treatment plan for an intracranial target
- Discuss QA tests
The CyberKnife System

- Linear accelerator
- X-Ray sources
- Robot
- Synchrony Camera
- Robotic Collimator Changer
- Motorized couch
- Flat panel detectors
Linac and Robot

- Linac:
 - 6 MV x-rays
 - Dose rate up to 1000 MU/min
 - No-flattening filter

- Robot:
 - 6 axis joint motion
 - Non-isocentric beam delivery
 - Predefined path sets
 - Nominal SAD 80 cm
Collimator system

- Fixed:
 - 12 tungsten cone, 5-60 mm diameter
 - Multiple path traversal
 - Advantages: Sharper penumbra, no field size uncertainty
 - Used for small targets, spherical targets
- Iris
 - Dodecahedron
 - Multiple beam apertures per robot position
 - Advantages: Efficient delivery, shorter treatment times
 - Used for spatially complex targets
MLC Collimator

- MLC design:
 - 41 leaf-pairs, 9 cm thickness
 - 2.5 mm width at 80 cm
 - 12x10 cm at 80 cm
 - 100% over-travel and inter-digitation
 - Leakage <0.3% average, <0.5% max
 - Position reproducibility ±0.4 mm
 - Step and shoot mode

- Advantages: Efficient delivery, treatment of large targets
The imaging system provides a stereotactic frame of reference.

2 diagnostic x-ray sources and 2 flat panel detectors.

It enables to track, detect & correct for patient and target motion.

The isocenter is the reference point for robot calibration, treatment planning and image guidance.
Image guidance during treatment

- CyberKnife SRS is frameless
- 6D Skull tracking
- Alignment center

- Real-time, live images are compared against DRRs generated from planning CT at 45 degrees angle
- Robot adjusts position based on this comparison
Patient setup

- Primary goal of immobilization: reproducibility, patient comfort
- Thermoplastic mask
- Soft padding
Imaging studies

- Primary CT scan used for dose calculation and DRR generation
- Secondary images used for target and OAR delineation (MRI, PET, contrast CT)

- Primary CT specifications:
- Contiguous no gap, no contrast
- Square acquisition (max 512x512x512)
- Include anterior and superior aspect of mask with 1 cm margin

Image of fusion MR/CT
Treatment Parameters

- Number of fraction
- Treatment anatomy: head
- Template path set
- Tracking method: 6D Skull
- Collimator type
Align Center

- Set up image alignment center
- Maximize information on the DRR
- Align center does not depend on target location
Contours

- Manual
- Auto-segmentation for Brain
- Skin
- Max of 22 contours
- Need a couple open contours to do VOI operation
Plan setup

- CT density table
- Density override
- Dose calculation grid
- Beam blocking
Sequential Optimization

- Principles of sequential optimization
- Collimator selection
- MU limits
- Auto-shells
- Constraints and steps
- Time reduction
- Node reduction
- Beam reduction
- Prescription
Sequential Optimization

- In conventional optimization algorithms, multiple objectives are grouped in a single cost function.
- In sequential optimization, each objective (step) is optimized in sequence.
- The objective and the order of the steps define the clinical priorities.
- Auto-shells are tuning structures used to constrain the conformality and the extension of the low-dose region.
- Beam reduction removes all beams below a MU threshold and re-optimize the plans with the remaining beams while preserving the plan quality.
- Time reduction reduces the number of beams and nodes to achieve the user-defined time goal.
Sequential optimization is divided between Maximum Dose Constraints and Dose Volume Constraints (hard constraints) and Dose Objectives (steps).

- Optimizer runs through the steps sequentially.

- Objectives:
 - Target objectives
 - OAR objectives
 - Shells objectives
 - MU objectives

- Total number of sample points
Auto-shells

- Auto-shells are used to control dose conformity around the target and dose fall-off away from the target (dose fingers)

Image of auto-shells
Collimator size selection

- Spherical tumors – usually one collimator, a little larger than half the tumor size.

- Everything else – usually at least two, which are bound by the smallest target features and the largest collimator that fits in the target.

- Fixed – usually two, similar to these bounds.

- Iris – from the largest down to 12.5 or 10 mm.

- We never use 5 or 7.5 mm for the iris and only use them sparingly for fixed.

Image of a complex target with features

Courtesy of Neil Kirby
Dose calculation algorithms

- **Ray Tracing:**
 - Simple dose calculation method – equivalent path length
- **Ray Tracing with contour corrections**
 - Improved accuracy for oblique incidence (target near the surface)
- **Monte Carlo**
 - Most accurate dose calculation method – used in the presence of tissue heterogeneities (lung, spine, brain near the skull or air cavities)
- Ray tracing is adequate for treatment sites in the head with small tissue heterogeneity *

* Wilcox et al, PRO (2011) 1, 251
Plan Evaluation

- Evaluate the dose distribution everywhere in the patient
- DVH analysis
- Dose conformity – nCI
- Dose homogeneity – 1/IDL
- Low dose fingers
- Beam directions
Multiple targets

- **CyberKnife - cones**
 - 24 Gy x 3 fx to 64%
 - Beams: 166
 - Tx time: 41 min
 - Total MU: 39,600
 - Brainstem D_{max}: 10.5 Gy
 - R50%: 4.4

- **CyberKnife MLC**
 - 24 Gy x 3 fx to 73%
 - Beams: 41
 - Tx Time: 22 min
 - Total MU: 13,200
 - Brainstem D_{max}: 9.4 Gy
 - R50%: 3.6

Courtesy of Chris McGuinness, UCSF
Dose Delivery QA

Image Registration
- Align center of patient’s target with center of phantom’s target.

Dose Evaluation
- Calculate corresponding dose distribution
- Rescale MU <700 cGy.

Plan Delivery
- Deliver plan on phantom Gafchromic EBT2 films
- Axial & sagittal planes.
Film Analysis

Film Planned dose

Dose profile comparison

Statistical analysis

- Planned dose
- Film
Targeting accuracy QA

- End to End
- AQA
- Table comparing the different QA test and frequency
Summary

- Take home message
Acknowledgments

- UCSF CK team
- Dilini Pinnaduwage
- Neil Kirby
- Chris McGuinness
- Jean Pouliot