Optimizing dose and image quality in fluoroscopy

A. Kyle Jones, Ph.D.

Assistant Professor

MD Anderson Cancer Center

Disclosure

 I am co-owner of Fluoroscopic Safety, LLC, a company that markets educational programs on the safe use of fluoroscopy

Educational objectives

- Identify targets for dose and image quality optimization in fluoroscopy
- Describe strategies for exploiting these targets
- Realize that dose optimization must be consider in the broader context of procedural goals

Optimize, not reduce

- We should always be speaking in terms of optimizing clinical procedures that are justified
- The use of "dose reduction" implies efforts to reduce dose without consideration of image quality
- Especially in fluoroscopy, attempting to reduce dose with a blind eye towards image quality can actually *increase* dose in the end

Targets for optimization

- Equipment configuration/calibration
- Practice/use of fluoroscopy
- Technology

EQUIPMENT CONFIGURATION AND CALIBRATION

Easy targets for optimization

- Minimum filtration
- Positioning without radiation configured to be enabled by default
- Configure desired organ program to be loaded by default
- Use of variable frame rate
- Mask averaging
- Choose the right equipment
- Use pulsed fluoroscopy and configure it to use the Aufrichtig scale

Scott Adams, www.dilbert.com

Bushberg et al. The Essential Physics of Medical Imaging, 3rd ed.

Contrast and beam quality

- Iodine contrast is strongly affected by beam quality
- The addition of filtration allows the use of low kV while maintaining dose at an acceptable level
 - Traditional, Program-Switched
- Sacrifices may need to be made to maintain kV at desired level
 - E.g., focal spot

Ishida E et al. Image quality improvement and patient dose reduction by optimization of x-ray spectrum. Jpn Radiol Technol **55**:582-587 (1999).

Balancing filtration

- Impact in FLU vs. ACQ
- Must consider impact on related organ program parameters
 - Pulse width
 - Focal spot size
- Configuration options
 - "Traditional" method
 - Static filter
 - "Program-switched" method
 - Filtration linked to organ program (e.g., Philips)
 - Seissl method (e.g., Siemens)

	(2) Cardiac Cath			
FLUORO	FL Card Low (21,4)	FL Card Avg (21,5)	FL Card Lg (21.6)	
EXPOSURE	FLUORO	FLUORO	FLUORO	
kV	81	70	70	
Pulse Width	8	8	8	
kV ms	90	90	90	
kV dose	109	109	off	
EP Reduction	2	2		
Cu mm Min	0.6	0.2	0.1	
Cu mm Max	0.9	0.6	0.3	
Dose	36	45	55	
High Contrast (20R)	Normal	Normal	High	
kV Warning	109	109	off	
Focus	S	S	δ	

Lin PP and Rauch P. AAPM Report 125 – Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems, 2012.

· Y9	m		этс
ACI		9	JLJ

					Profile:
1 HAE 2K	HEPATIC VFR Manual	CELIAC VFR Manual	SMA VFR Manual	GDA VFR Manual	▲ UNIVERSAL ▼ Display
		Fluoro Angio 10 P/s	Fluoro Angio 7.5 P/s	Fluoro Angio 15 P/s	Roadmap Delete
2 HAE HC	/ HEPATIC VFR Manual	CELIAC VFR Manual	SMA VFR Manual	GDA VFR Manual	Save As New
TIME HO		Fluoro Angio 10 P/s	Fluoro Angio 7.5 P/s	Fluoro Angio 15 P/s	Edit Prog Apply
3 DynaCT	HEPATIC VFR Manual	5s-1k DR 1.5 °/F	8sDR 0.5 °/F	8s_DR_HQ 0.5°/F	Programs: Acq ▼
Dynacı		Fluoro Angio 10 P/s	Fluoro Angio 7.5 P/s	Fluoro Angio 15 P/s	Show List
4	Veno 1 1 F/s	Veno 2 2 F/s	DSA 3 3 F/s	Veno Single	
Venogr.		Fluoro Angio 10 P/s	Fluoro Angio 7.5 P/s	Fluoro Angio 15 P/s	
5	PTC/Drain 1 F/s	PTC Sub 1 F/s	Native 2 2 F/s	Single Single	
Biliary		Fluoro Angio 10 P/s	Fluoro Angio 7.5 P/s	Fluoro Angio 15 P/s	~

SIEMENS

Close Editor

Help

-tU ee

REF

- Pro

Variable frame rate (VFR) imaging

- The concept of this technique is quite simple – by reducing the total number of ACQ frames, dose is reduced
- Frame rate reduction is triggered by
 - Time
 - Manually

Mask averaging

- Reduction in image noise that can translate directly in to reduction in dose with virtually no impact on image quality
- Unfortunately, in my practice it is rarely used

3.6 uGy/fr 2.4 uGy/fr

Aufrichtig scale for pulsed fluoroscopy

- The human visual system has a finite integration time of approximately 200 ms
- Richard Aufrichtig studied this phenomenon and derived an empirical relationship relating the necessary dose per pulse to the pulse rate
- The use of lower pulse rates results in an LIH image of higher quality

$$\left(\frac{IAKRD_2}{IAKRD_1}\right) = \sqrt{\frac{PPS_1}{PPS_2}}$$

Illustration courtesy of Phil Rauch, M.S.

Illustration courtesy of Phil Rauch, M.S.

July 20, 2014

Illustration courtesy of Phil Rauch, M.S.

July 20, 2014

Physician practice

- Physicians have plenty on their mind during a complex FGI
- We cannot expect them to also retain detailed knowledge of equipment settings and apply this knowledge during a case
- We should provide simple instructions and configure protocol defaults with this in mind
- Speak their language

Key aspects

- The Tetrad
- Notification levels and associated actions
- Dose audits

The "Tetrad"

- 1. Raise the patient table to the highest comfortable working height.
- 2. Lower the image receptor as much as practicable.
- 3. Take one small step back or down the table away from the patient.
- 4. Collimate the X-ray field to the area of interest.

Procedural geometries

Using Good Practice is essential during fluoroscopic procedures, including maintaining the patient as far from the X-ray source as practical. This is common in vascular and interventional procedures, and results in a *non-isocentric* geometry.

The dose rate at the skin surface will be lower in a non-isocentric geometry than in an isocentric geometry.

Isocentric geometry

Non-isocentric geometry

Establishing a Patient Safety Program in Fluoroscopy, Fluoroscopic Safety, LLC.

Table 4.7-Suggested values for first and subsequent notifications and the SRDL.

Dose Metric	First Notification	Subsequent Notifications (increments)	SRDL
$D_{ m skin,max}$	2 Gy	0.5 Gy	3 Gy
$K_{ m a,r}$	3 Gy	1 Gy	$5 \mathrm{~Gy^a}$
$P_{ m KA}$	$300~{ m Gy~cm}^{2~{ m b}}$	$100~{ m Gy~cm}^{2~{ m b}}$	$500~\rm Gy~cm^{2b}$
Fluoroscopy time	30 min	15 min	60 min

^aSee additional discussion concerning the value 5 Gy in Section 4.3.4.2.

NCRP 168

^bAssuming a 100 cm² field at the patient's skin. For other field sizes, the $P_{\rm KA}$ values should be adjusted proportionally to the actual procedural field size (e.g., for a field size of 50 cm², the SRDL value for $P_{\rm KA}$ would be 250 Gy cm²).

Notification levels by lab/fluoroscope type

Differences in notification levels reflect differences, technical and geometric, in how fluoroscopically-guided procedures are performed. A number of factors influence the ratio of peak skin dose (PSD) to RAK: procedural geometry, backscatter, and attenuation by the patient support and pad.

Each notification level should involve a procedural pause and communication of the radiation dose status to the operator.

Lab/fluoroscope type	Typical ratio of PSD to RAK (PSD/RAK)
Vascular/interventional radiology	1.0
Cardiac catheterization	1.3-1.4
Interventional neuroradiology	1.0-1.3
Mobile C-arm	1.0-1.5

Establishing a Patient Safety Program in Fluoroscopy, Fluoroscopic Safety, LLC.

Example – Vascular/Interventional Radiology

RAK notification level (mGy)	Corresponding PSD (mGy)	Suggested action
2,500	2,500	Verify Good Practice is being used.
5,000	5,000	Substantial radiation dose level. Flag patient for f/u. Measure and record table height.
7,500	7,500	Verify Good Practice. Re- evaluate risk/benefit pace of procedure, entering range of potential skin injury.
10,000	10,000	Verify Good Practice. Re- evaluate risk/benefit pace of procedure. Skin injury more likely.

The use of a non-isocentric geometry means that PSD is often similar to RAK for VIR procedures.

^{*}And every 1,000 mGy above 10,000 mGy. These notification levels are for illustration purposes only and the numbers are approximate.

Example – Interventional cardiology

RAK notification level (mGy)	Corresponding PSD (mGy)	Suggested action
1,800	2,500	Verify Good Practice is being used.
3,600	5,000	Substantial radiation dose level. Flag patient for f/u. Measure and record table height. Consider rotating C-arm.
5,400	7,500	Verify Good Practice. Re-evaluate risk/benefit pace of procedure, entering range of potential skin injury.
7,200	10,000	Verify Good Practice. Re-evaluate risk/benefit pace of procedure. Skin injury more likely. Consider rotating C-arm.

The use of an isocentric geometry means that PSD is often greater than RAK for interventional cardiology procedures.

^{*}And every 700 mGy above 7,200 mGy. These notification levels are for illustration purposes only and the numbers are approximate.

Dose audits

- The simple act of beginning to record dose metrics will often on its own trigger practice changes
- Stratification of the data can identify specific targets for improvement
- Compare to normative data sets
 - E.g., RAD-IR study

Recommendation 19

Facilities *shall* have a process to review radiation doses for patients undergoing FGI procedures.

Advisory data based on measured dosimetric quantities (in particular $P_{\rm KA}$ or $K_{\rm a,r}$ to manage overall performance, and $K_{\rm a,r}$ to manage deterministic effects) *should* be used for quality assurance purposes.

NCRP 168

Radiation dose audits

Balter S et al. Patient radiation dose audits for fluoroscopically guided interventional procedures. Med Phys 38(3):1611-18, 2011.

Technological advances

- Detector technology
 - Higher acquisition bit depth
 - Crystalline silicon
 - Electron mobility
 - Active pixel sensors
- X-ray tube technology
 - Flat emitter

Sun D et al. Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156-161 (2011).

Nissin Ion Equipment Co, Ltd. http://www.nissin-ion.co.jp/en/prd/id/

Backplane	a-Si:H	poly-Si	mono-Si
Monolithic array size	Large	Medium	Small
e ⁻ mobility	1 cm ² /V-s	100 cm ² /V-s	1000 cm ² /V-s
TFT mask steps	4-5	5-11	5-11
Leakage current	Low	Higher	Higher
Radiation hardness	Excellent	Good/Fair	Poor
Large scale uniformity	Good	Fair	Poor
Cost/yield	Low/High	High/Low	High/Low

Further reading

- Miller et al., Quality improvement guidelines for recording patient radiation dose in the medical record. J Vasc Interv Radiol 15:423–429, 2004.
 - SIR Standards of Practice Committee
- Miller DL, Balter S, Noonan PT, Georgia JD, Minimizing radiation-induced skin injury in interventional radiology procedures. Radiology 225:329–336, 2002.
- Stecker et al., Guidelines for patient radiation dose management. *J Vasc Interv Radiol* **20**:S263–S273, 2009.
 - SIR Safety and Health Committee
 - Discharge/consenting examples
- Archer BR and Wagner LK, Protecting patients by training physicians in fluoroscopic radiation management. J Appl Clin Med Phys 1:32-37, 2000.
- Wagner LK and Archer BR, Minimizing Risks from Fluoroscopic X Rays, 2nd ed., R.M. Partnership, The Woodlands, TX.
- Balter S, et al. Fluoroscopically guided interventional procedures: A review of radiation effects on patients' skin and hair. Radiology, 254:326-341
- NCRP Report 168