Medical Physics 2.0 Emerging Practice of Medical Physics in CT

Ehsan Samei, PhD, DABR, FAAPM, FSPIE Department of Radiology Duke University Medical Center

Disclosures

- Research grant: NIH
- Research grant: RSNA QIBA
- Research grant: General Electric
- Research grant: Siemens
- Research grant: Carestream Health
- Royalties: Oxford University Press
- Share-holder: Zumatek Inc
- Consultant: GLG Council

Credits

Justin Solomon Rachel Tian Baiyu Chen Olav Christianson Josh Wilson Paul Segars James Winslow

ke CIPG ical Imaging Physics Group

Medical Physics 1.0

- We have done a GREAT job using engineering and physics concepts to
 - Design systems with superior performance
 - Ensure minimum intrinsic performance
 - Claim compliance
- But...

Why 1.0 is not enough

- Clinical performance?
- Optimization of use?
- Consistency of quality?
- Changing technology?
- Value-based healthcare?

1.0 to 2.0

- Clinical imaging physics extending from
 - intrinsic to extrinsic
 - Specs to performance
 - compliance to excellence
 - Quality to consistency
 - Equipment to operation

Outline

- A. Physics implications of new technologies
- B. New metrics and metrology
- C. Operationalizing medical physics 2.0

A. Physics implications of new technologies

Physics and new technologies

- 1. Hardware
 - New detectors
 - Operation is extra low dose
 - Photon-counting

Physics and new technologies

2. Acquisitions

- Innovative helical scans
- Wide-beam acquisitions
- AEC and its variants

Physics and new technologies

3. Image processing

- Iterative reconstructions
- Kernels
- Quantitative CT
- Higher order data analysis
 - 3D rendering
 - CAD
 - Functional analysis (eg, perfusion)

Physics and new technologies

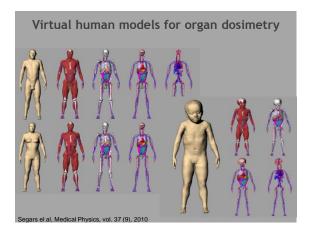
4. New designs and applications

- Dual-energy
- Inverse geometry
- Application specific devices
 - Dental
 - MSK
 - Breast
 - RT

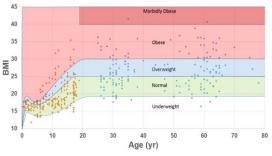
B. New Metrics and Metrologies

Metrics and metrology

- 1. Radiometrics
 - From CTDI to SSDE and beyond
- 2. Qualimetrics
 - From CNR to d' and beyond
 - Size, contrast, and texture effects

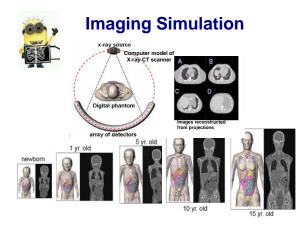

Radiometrics

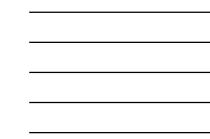
Metric	Definition
СТД	Radiation output of a CT system in a standard sized phantom
SSDE	Radiation output of a CT system adjusted for the average patient size (for chest, abdomen/pelvis scans)
Organ dose	Dose to individual organs; estimated by simulation or experimental measurement
Effective Dose	Weighted sum of organ/tissue equivalent dose for radiation sensitive organs ignoring patient specific factors
Risk index	Weighted sum of organ/tissue equivalent risk for radiation sensitive organs, accounting for age, gender, anatomy



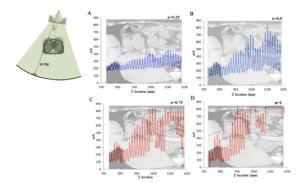
Metric	Measure-able	Scanner model and factors	Patient Size	Patient anatomy	Patient age	Patients Gender	Modality generic	Patient avg total burden
СТЛ								
SSDE								
Organ dose								
Effective Dose								
Risk index								

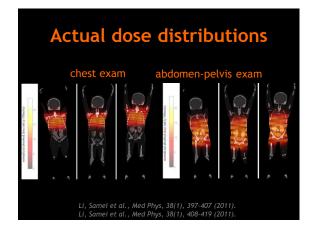




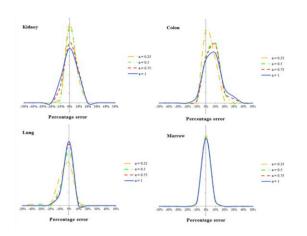


Population Representation


Building towards 400 patient models

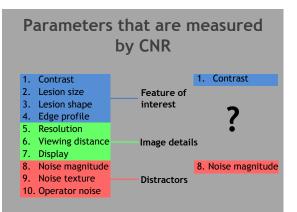


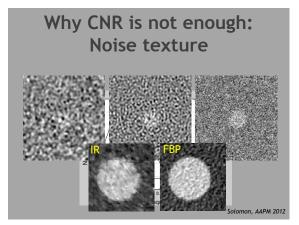
Tube Current (mA) Modulation

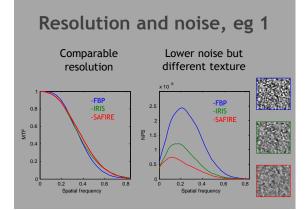


Typical organ dose values (chest CT) (a) L Bose (mGy) a Fixed mA se TCM seam Fixed mA scat TCM scan Fixed mA scan 28 30 32 34 36 Chest diameter (cm) ۰<u>۱</u> 34 30 32 34 36 Chest diameter (cm) 30 32 34 36 fer (cm) Fixed mA scan Fixed mA scat TCM scan Fixed mA scar TCM scar ■ Dose (mGy) 4 (BC) Ž., • [32 34 36 28 30 32 34 36 Chest diameter (cm) 30 32 34 36 Chest diameter (cm) 26

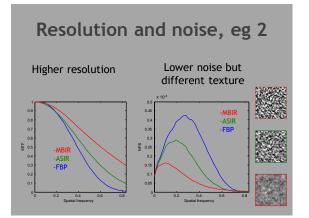
Qualimetrics

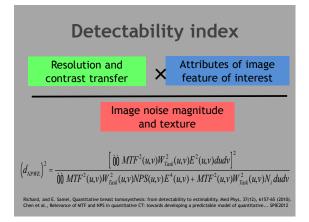

Feature of

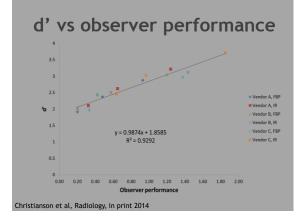

Image details

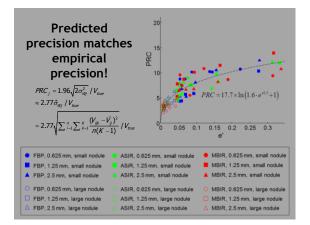

interest

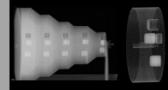
- 1. Contrast
- 2. Lesion size
- 3. Lesion shape
- 4. Edge profile
- 5. Resolution
- 6. Viewing distance
- 7. Display
- 8. Noise magnitude
- 9. Noise texture Distractors
- 10. Operator noise



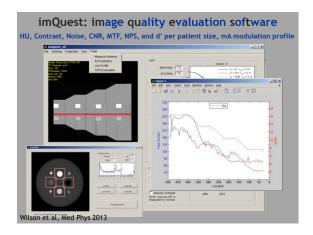


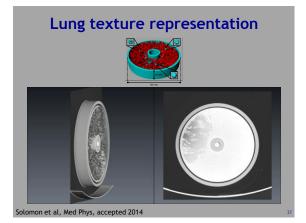


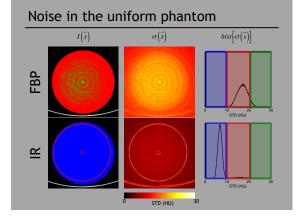



Task-based assessment metrology **Mercury Phantom 3.0** • Diameters matching population cohorts

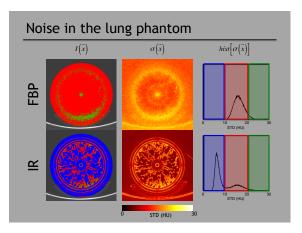
- Depths consistent with cone angles
- Straight-tapered design enabling evaluation of AEC response to discrete and continuous

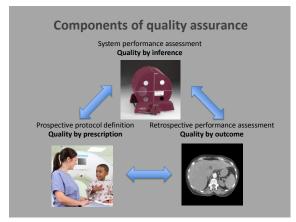

size transitions 85 mm


Design: Resolution, HU, noise

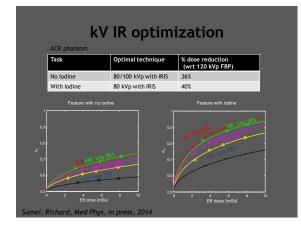


- Representation of abnormality-relevant HUs
- Iso-radius resolution properties
- · Matching uniform section for noise assessment

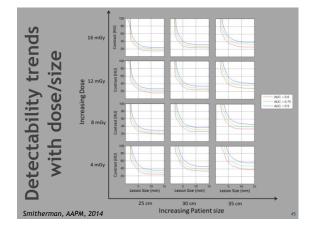


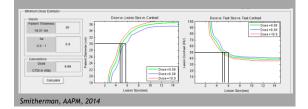




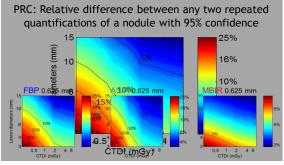

C. Operationalizing Medical Physics 2.0

Operational medical physics 2.0

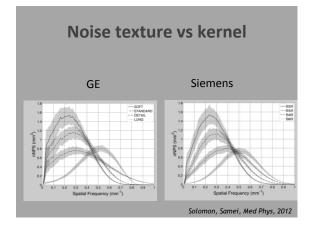

- 1. Quality by prescription
- 2. Quality by outcome
- 3. Training and communication
- 4. Pragmatism QC

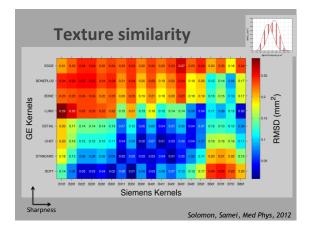


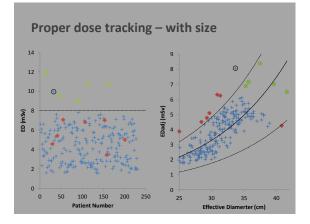
Proto		Insone Evaluator Insone Task Leson Conte Leson Sole Usion Sole Values should be b 0.1 and 15 m	zati	on
Setting dos performan				
CTDI IN MOY 0.6			Le pu	liene
Calculations dPrime 7 0.4		0.4		
Az 7 0.2		0.2		
Cattulana	0.2 0.4 0.8	0.0 1 0	0.2 0.4	0.8 0.8 1
Minimum Dose Esimator				
Patient Thickness 1		'r		
18-37 cm 0.8		0.8		
Az 0.5 - 1 0.5 -		0.6		
		0.8		
Calculations-0.4		0.4		
GTDI IN INGY 7 0.2		0.2		
Smitherman, AAPM, 2014	0.2 0.4 0.	6 0.0 1 0 0	0.2 0.4	0.6 0.8 1

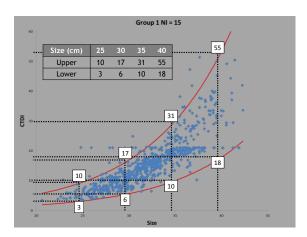

Protocol optimization

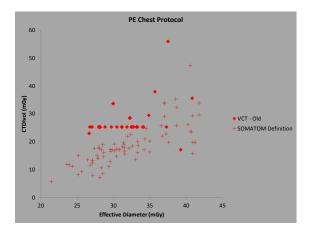
• Setting dose to achieve a targeted task performance for a given size patient

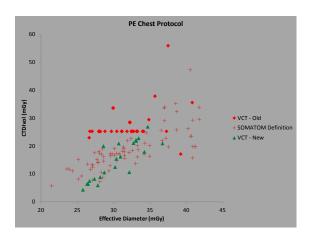



Quality-dose dependency Quantitative volumetry via CT

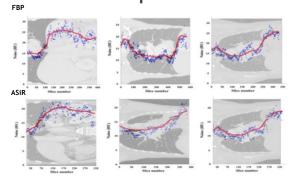


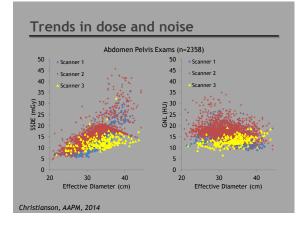


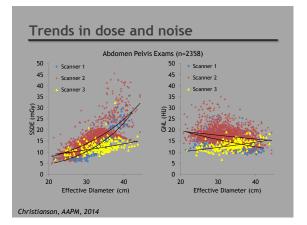




max mA					700					
DFOV (cm)					per patient	per patient				
Rerative Reconstruction					40%	40%				
Recon Algorithm					Standard	Standard				
Recon Mode				Full	Plus					
AUTO APPS DMPR					_	NA	Yes/Coronal			
CTDI Patient Width 25cm	Upper Guideline					9				
CTDI Patient Width 30cm	Target					6				
CTDI Patient Width 35cm						3				
CTDI	Target					17			-	
Patient Width 40cm	Lower Guideline					8				
Notes	rio abcess always MD If abcess radiologist to s	check fipulate if oral is	needed							
Contrast Contraindications:										






Noise per slice

Communication

- Insular days of medical physics are over
- We are as good as we can communicate

Pragmatic medical physics

- We need to be smarter with our 1.0 activities to clear space for 2.0 stuff
- Action for the sake of action is not value-based

Conclusions: Clinical imaging physics at the cross-road

- New technologies necessitates an upgrade to physics metrology
- Clinical needs requires to become more operationally minded
- New healthcare realities provides us an opportunity to become more value-conscious

