QA Concerns in MR Brachytherapy

Robert A. Cormack
Dana-Farber Cancer Institute & Brigham and Women’s Hospital

Acknowledgements

• No financial conflicts of interest
• I may mention use of devices in ways that are not approved
• Collaboration
 – Radiology
 • Clare Tempany
 • Niall Harrington
 • David Dierks
 • Ehud Schmell
 • Darrin Gover
 • Andrew Andrew
 • Carly Bregg
 – MR guided
 – Permanent prostate 1997
 – Prostate biopsy 1999
 – Cervix 2002
 – TPS 2012
 – Robotic assistance 2014
 – Tracking 2013

Learning Objectives

• Review QA concerns for MR imaging in brachytherapy
• Review QA concerns for devices in MR brachytherapy
• Review QA concerns for MR based treatment planning
• Discuss technical challenges
 – MR based planning
 – MR guided implants
• Indicate current developments & efforts

Traditional T&O

• Tandem and ovoids
 – Tandem length
 – Ovoid separation & diameter
• Imaging
 – Orthogonal x-rays
• Planning
 – Variable loading
 – Reference point dosimetry

Dose calculation

• Dose reported wrt applicator & os
• Rx dose
 – Report A, B
 – Ovoid surface dose
 – Bladder: foley
 – Rectum: packing

Traditional Summary

• Imaging: x-ray
• Simple metal sturdy applicators
• Sources
• QA
 – X-ray & film
 – Applicator & shielding
 – Source
 – TPS
HDR Suite

- Shielding
- Radiation detectors & monitors
- Imaging
 - Fluoro
 - CT
 - TRUS
 - MR
- Afterloader

Evolution of Brachytherapy

- 3D image based CT/MR
 - Anatomic structures (MR)
 - Source localization (CT)
- HDR afterloading
- Applicator development
 - Geometry
 - Image compatibility
- Conformal dose distributions
- Image guidance

Image Based Brachytherapy Process

- Place **applicator**
- Image patient with applicator
- Planning
 - Identify anatomy
 - Localize applicator
 - Calculate dose
- Treat

Why MRI?

Prostate

- Visualization of capsule and substructure: T1, T2
- Identification of primary tumor: MRS, DCE, DWI
- Normal tissues

Gyn

- Target visualization
- Normal structures
- Target definition guidelines

MR Scanners

0.3 T
0.5 T
1.5 T
3.0 T

MR Pulse Sequences

- T1 applicators
- T2 anatomy
- Diffusion
- Hypoxia
- Metal enhancement
- Common coordinate system?
- Different behavior
QA Concerns

- Patient safety
- Imaging device
- Applicators
- Afterloader
- Sources
- TPS
- Secondary calc

MRI Concerns: General Safety

- MR safe vs MR compatible
- Boy, 6, Dies of Skull Injury During M.R.I.
 - Controlled access
 - Device check using high strength magnets
 - Patient screening
 - Implanted devices

MRI Concerns: Applicator Safety

Applicators
- Magnetic safety
 - Plastics
 - Some metals
- Reports of excessive heating with Ti applicators at 3T

Scanner Energy Deposition

Ionizing radiation
- slice thickness
- kV
- mA
- pitch

RF power
- heating patches
- metal objects - eddy currents

MR QA

- Scanner QA similar to CT-Sim QA
- Guidance from Joint Commission and ACR
 - Annual (quarterly)
 - Weekly
 - Daily
- Involve an MR physicist

Joint Commission Requirements for MRI
- ...
- Image uniformity for all RF coils used clinically
- Signal-to-noise ratio for all coils used clinically
- Slice thickness accuracy
- Slice position accuracy
- Alignment light accuracy
- High contrast resolution
- Low-contrast resolution
- Geometric or distance accuracy
- Magnetic field homogeneity
- Artifact evaluation
- ...

Weekly QA

- ACR phantom images acquired @ sites
 - Images transferred to central server
 - Measurements made on phantom images
 - Electronic QA form filled

MR Physicist
- Update database and run automated analysis (twice weekly)
- Review warnings on performance limits and messages from site technologists
- Respond to warnings and messages and document
- Interact with sites as needed

MR QA
Quarterly QA
• Visual inspection (coils)
• Performance evaluation
• RF Noise
• Slice interference
• Field Homogeneity

Afterloader and Source QA
• Afterloader and sources used outside MR environment. Covered by AAPM guidance
• Monthly QA
 — Source calibration
 — Timer accuracy
 — Positional accuracy
 — Interlocks
 — Safety features
 • Batteries
 • Detectors

Treatment Planning System
• Source decays
• Geometric accuracy
 — Slice thickness
• Dose calculations
 — Secondary calcs
 — Water universe
• Compatible with MR scans?
 — Obliques
 — spacing

Image Based Brachytherapy
• QA guidance
 — Imaging: without devices
 — Brachy: without MR
 — TPS: typically CT
• No guidance for a combined imaging brachytherapy process

Components of Brachytherapy
• Applicators or sources placed in patient
• Imaging with devices in place
• Applicators and anatomy localized
• Treatment planning in MR

Devices in MR
• Safe vs. compatible
• HDR applicators offered in MR versions
• Accessories may be safe but not compatible
• Compatibility may be pulse sequence dependent
• Image with devices in scanner
MR Based planning: Multiple pulse sequences

- Example image guided prostate implant
- Multiple MR sequences
 - Anatomy T2
 - Sources T1 (artifacts merge)
- Coordinate system
- CT source identification
- Implanted objects provide means of registration

MR Based planning: T&R,T&O

- MR target definition: GEC-ESTRO HR CTV
- MR compatible applicator differences: diameter, shielding
- Applicator enable fusion
- Multiple sequences: Applicator/Anatomy
- Extended applicator make distortion a concern
- Fusion to CT allows evaluation of geometric distortions

Applicator Digitization,

- T&X have significant artifacts
- Thick slices increase uncertainty
- MR ~3mm vs CT ~1mm
- No ‘dummies’
- No independent verification (scout)

Model Based Applicator Digitization

- Validate model
- Geometry in model
- Can be used to visually detect distortions
- No channel ambiguity
- Challenges
 - Uncoupled components
 - Needles
- Coronal/sagittal may provide complimentary information

T&x with needles

- Addition of interstitial needles complicates issues
 - Needle localization
 - Artifact crossing
 - Tip localization
 - Needle identification

MR Based Planning: Interstitial

- 10-30 needles
- Assume HDR with post-implant planning
- Most devices plastic, NOT QUITE!
- Gyn: large irregular targets
- Prostate: small regular targets
Needle Digitization
- Enhanced T&x or Interstitial
- Needle digitization
 - Tip identification
 - Channel confusion
- Distortion vs curvature
 - MR scanner corrections
- Distortions affect dose calculation. Not present in CT
- MR corrections

Needle Localization
- MR artifacts larger/ambiguous compared to x-ray or CT
- MR dummies not readily available
- CT with multiple scans /dummies and fuse
- RF Trackers
- Phantoms to evaluate artifacts

Future Trends
- Adaptive planning
- MR guidance
- Tracking tools

MR Guided Brachytherapy
- Brachytherapy is dominated by placement
- Optimization can make a good implant better but cannot make a poor implant good
- Placement is controlled at a distance
- How do we use MR to improve placement?

Insertion under MR guidance
- Magnet design
 - Open
 - Closed
- Interstitials
 - Geometry

0.5T Open Magnet MR Guided HDR Needle Placement
- MR guided targeting
 - Biopsy
 - Brachytherapy
 - 0.25 fps
- Requires localization of needle guidance device
 - Template
 - Image based
 - External system
 - Optical
 - Mechanical
 - Physician
3T Closed-bore MR Guided HDR Needle Insertion (GYN)

- Real time imaging 4f/s
- Pt repositioning between group needle placement
- Needles degrade image
- Target shifts
- Tends to focus on needle not configuration
 - Catheter spacing
 - Multiple depths
- Allows easier needle placement

MR Dosimetry Guided Implants

- Permanent implants
 - Seed identification challenging
- Needles as surrogates
- No repositioning of pt
- Scanner coordinate system
- Template/robot registration

Dose Distributions Based on Source Locations

Preplan (Intraoperative)

Dosimetric Feedback

Preplan

Intermediate: with observed trajectories based on RT imaging

Final: intermediate + additional sources

Geometric vs Dosimetric

Preplan

Intermediate: with observed trajectories based on RT imaging

Dosimetric Feedback & Adaptive Planning

- Permanent prostate implants
- Single visit implant
- Open magnet
- No patient repositioning
- MR target definition
- Optical template registration
- Adaptive planning
 - Needle artifact captured in TPS
 - Dose updated in real time
- Initial underplanning
MR guided brachytherapy efforts

• Improve physician access
• Improve catheter identification
• Improve imaging information

Improved Access: Development of MRI compatible robot

 Improved Needle Identification: Active MR Tracking

• PC coils mounted on stylet
• Capture location along length of needle
• User identifies channels
• Controls MR scan plane through tip of needle.

 Improved Information: Personalized Planning

• Multiparametric MR
• Hypoxia imaging
• Patient management
 – Sub-volume implant without constraining follow up.
 – Controlled placement of high dose regions

Conclusions

• MR is an ideal image modality for image based or image guided brachytherapy with outstanding visualization of pelvic anatomy
• MR can be involved in brachytherapy at various levels of complexity
• MR brachytherapy provides a number of opportunities to improve process and treatments, but introduces a number of challenges
• Image based brachytherapy is a process. Its QA involves more than the QA of the individual components.

Questions
What is a concern for MR brachy planning dose calculation that is not for CT?

- Heterogeneity corrections
- Source decay correction
- Spatial Distortion
- Channel identification
- Generating setup DRR

Answer

- Brachytherapy dose calculations assume a universe of water, source decay corrections and channel identification is a QA concern independent of planning modality. Set up DRRs are not routinely used for brachytherapy. Spatial distortion is a concern for MR imaging. Cormack RA. Quality assurance issues for computed tomography-, ultrasound-, and magnetic resonance imaging-guided brachytherapy. Int J Radiat Oncol Biol Phys 2008;71(1 Suppl), S136-141:doi 10.1016/j.ijrobp.2007.07.2389.

What MR scanner QA is not shared by CT QA?

- Image quality
- Patient energy deposition
- Coil wear
- Spatial accuracy
- Image resolution

Answer

- Visual inspection of RF coils on a regular basis is indicated by AAPM report 100. RF coils are used in MR but not in CT

Using CT-MR fusion is used to merge what information?

- CT: Anatomy; MR: Applicator Localization
- CT: Electron Density; MR: Spatial Accuracy
- CT: Spatial Accuracy; MR: Anatomy
- CT: Treatment Response; MR: Neutron Density
- CT: Electron Density; MR: Applicator Localization

Answer