Clinical Implementation of Auto-Planning

Ping Xia, Ph.D. Professor of Molecular Medicine Cleveland Clinic, Cleveland



#### Disclosures

É Philips: Research Grant É Siemens: Research Grant



# Clinic Demands Efficiency and Quality Cares

- É One of 2015øs themes at Cleveland Clinic is to improve patient access.
- É From Cancer Center, we aim to reduce time from cancer diagnosis to treat.
- É From Radiation Oncology, we aim to reduce time from simulation to treat.

#### **Cleveland Clinic Clinical Workflow and Timeline**



Cleveland Clinic

#### Why Auto-Planning?

- ó IMRT planning requires constant real time tuning of the planning objectives and extra contours ó Chinese Cooking method
- ó Highly dependent on how and when these tuning planning objectives and contours are added in optimizer - cooking process.
- ó It depends anatomical relationship among the OARs and PTVs cooking ingredients.



#### What Is Auto-Planning (AP)

- É AP is a new IMRT planning module in Pinnacle system, released in version 9.10.
- É Users can create their own cancer specific, machine specific, or IMRT delivery method specific AP technique to speed up IMRT planning ó recipe method
- É Users can also use AP to perform IMRT optimization while setting other planning parameters such as beam angles, delivery method (step and shoot vs. VMAT) ó spontaneous method

## My Early Experience in 2003



Int. J. Radiation Oncology Biol. Phys., Vol. 59, No. 3, pp. 886–896, 2004 Copyright © 2004 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/04/\$-see front matter

doi:10.1016/j.ijrobp.2004.02.040

#### PHYSICS CONTRIBUTION

#### A STUDY OF PLANNING DOSE CONSTRAINTS FOR TREATMENT OF NASOPHARYNGEAL CARCINOMA USING A COMMERCIAL INVERSE TREATMENT PLANNING SYSTEM

PING XIA, PH.D., NANCY LEE, M.D., YU-MING LIU, M.D., IAN POON, M.D., VIVIAN WEINBERG, PH.D., EDWARD SHIN, M.D., JEANNE M. QUIVEY, M.D., AND LYNN J. VERHEY, PH.D.

Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA



### I was Skeptical

- É Auto-Planning could only work for simple cases
- É Ideal candidates include sites with small variations in tumor shape and location prostate cancer, possibly nasopharynx cancer.
- É Challenging sites include head and neck cancer with variations in tumor shapes and locations.



# Example 1

É Oral Cavity Case
É Rx dose: 64 Gy, 60 Gy, and 54 Gy.
É Nine beams used in the clinical plan,
É Nine beam used in the auto-plan Step and Shoot (SS) plan
É 2 arcs used in auto-VMAT plan



#### Clinical PlanAuto-Plan SSAuto-Plan VMAT



#### **68.0**, **64.0**, **60.0**, **54.0**, **45.0**, **35.0**





### Example 2

É Larynx Cancer
É Rx: 70 Gy and 56 Gy
É Clinical Plan: Nine beam angles
É Auto Plan: Nine beam Angles step and shoot (SS)
É Auto Plan: 2 arc VMAT



#### Clinical PlanAuto-Plan SSAuto-Plan VMAT



#### 77.0, 70.0, 56.0, 45.0, 35.0 Gy



#### **Comparison of HN Plans ( n=7)**

|             |                        | Clinical | AP_IMRT | AP_VMAT | Clinical vs.<br>AP_IMRT<br>p-value | Clinical vs. AP_VMAT<br>p-value |
|-------------|------------------------|----------|---------|---------|------------------------------------|---------------------------------|
| HD_PTV      | V <sub>706v</sub> (%)  | 95.5     | 95.5    | 95.5    | 0.643                              | 0.884                           |
| LD_PTV      | V <sub>56Gv</sub> (%)  | 96.5     | 98.5    | 98.7    | <0.001                             | 0.001                           |
| Brainstem   | D <sub>max</sub> (Gy)  | 30.7     | 24.7    | 20.4    | 0.016                              | 0.012                           |
| Spinal_cord | D <sub>max</sub> (Gy)  | 40.7     | 40.0    | 37.9    | 0.703                              | 0.339                           |
| Paratid_L   | D <sub>mean</sub> (Gy) | 31.8     | 28.4    | 27.2    | 0.213                              | 0.091                           |
| Paratid_R   | D <sub>mean</sub> (Gy) | 32.4     | 28.3    | 26.6    | 0.109                              | 0.032                           |
| Larynx      | D <sub>mean</sub> (Gy) | 41.1     | 30.07   | 29.3    | 0.014                              | 0.008                           |
| Trachea     | D <sub>mean</sub> (Gy) | 26.6     | 21.6    | 22.0    | 0.030                              | 0.036                           |
| Esophagus   | D <sub>mean</sub> (Gy) | 25.6     | 17.3    | 17.2    | 0.002                              | 0.001                           |
| н           |                        | 1.11     | 1.13    | 1.10    | 0.154                              | 0.314                           |
| C           |                        | 1.14     | 1.12    | 1.01    | 0.746                              | 0.003                           |

#### Prostate

É High risk Prostate É Rx: 78 Gy to prostate-PTV, 66 Gy to SV É Clinical Plan: 7 beam angles É Auto-Plan: 2 arc VMAT



# Clinical Plan Auto-VMAT te)

80.0, 78.0, 70.0, 66.0, 45.0, 25.0 Gy





#### Prostate and Pelvic Lymph Nodes (n=8)

|              |                            | Clinical plan<br>(mean $\pm$ SD) | Auto-plan<br>(mean $\pm$ SD) | p-value |
|--------------|----------------------------|----------------------------------|------------------------------|---------|
| PTV_prostate | V <sub>70Gv</sub> (%)      | 95.3 ± 0.1                       | $95.4 \pm 0.1$               | 0.310   |
| PTV_SV       | V <sub>60/56Gy</sub> (%)   | $96.3 \pm 2.8$                   | $99.7 \pm 0.4$               | 0.012   |
| PTV_LN       | V <sub>50.4/45Gy</sub> (%) | 93.3 ± 3.4                       | 96.4 ± 1.7                   | 0.067   |
| Bladder      | V <sub>63Gy</sub> (%)      | 8.9 ± 4.0                        | 9.2 ± 3.7                    | 0.274   |
| Rectum       | V <sub>63Gy</sub> (%)      | $11.8 \pm 2.7$                   | $9.1 \pm 1.9$                | 0.016   |
| Rectum       | V <sub>45Gy</sub> (%)      | $39.2 \pm 8.6$                   | $25.2 \pm 3.3$               | 0.005   |
| Penile bulb  | D <sub>mean</sub> (Gy)     | $38.2 \pm 15.8$                  | 25.6 ± 13.6                  | 0.001   |
| HI           |                            | $1.06 \pm 0.01$                  | $1.08 \pm 0.01$              | 0.006   |
| Cl           |                            | $1.00 \pm 0.03$                  | $1.00 \pm 0.02$              | 0.888   |

#### How it works

É Mimics the plannersøthought process
É Utilizes the plannersøtricks, such as creation of surrounding structures, tuning contours automatically

É Automatically runs multiple loops while adjusting planning objectives ó similar to what planners manually do



### No More Negotiation With Optimizer

- É IMRT planning was a process of negotiating with the optimizer.
  - ó Adding tuning structures, cold spots, and hot spots.
- É Auto-Planning allows us to simply state the dosimetric planning goals
- É Auto-Planning automatically creates planning objectives and tuning structures that are required.



#### A Complex HN case

É 40 structures (include two tumor volumes) were contoured.

- É 28 dose evaluation goals were input into auto-planning.
- É 26 additional tuning structures were automatically created.
- É 74 optimization objectives were automatically set for optimization.



| <u>or</u>                                                                                                                                                                           | Treatme                          | nt Techniques  |                                                                                                                                                                               |                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| File Passalag Bessar Auto-Plan Description                                                                                                                                          | tion For Auto-Planning           | Trial to Cr    | eate AP_WMAT_PELVIS                                                                                                                                                           | S ?                                                                              |
| Auto-Planning Settings<br>Max Iterations Engine Type<br>50 • Biological<br>Non-Biological<br>Advanced Settings<br>Target Optimization Goals<br>ROI Dose<br>CGy<br>Total PTV I (4500 | Organ At Risk (OAR) Optin<br>ROI | nization Goals | Dose<br>cGy         Volume<br>(%)           [4000         [30           [4000         [80           [4500         [35           [1000         [90           [4000         [37 | Priority Compromise<br>Medium I I<br>Medium I I<br>Medium I I<br>Medium I I<br>I |
| Add Delete                                                                                                                                                                          | Add Delete                       |                |                                                                                                                                                                               |                                                                                  |
|                                                                                                                                                                                     |                                  |                | Apply                                                                                                                                                                         | Apply and Optimize                                                               |

# An Example of Planning Goals for OARs

| Orga | ROI             | ization ( | Goals<br>Type | Dose<br>cGy | Volume<br>(%) | Priority |
|------|-----------------|-----------|---------------|-------------|---------------|----------|
| Ŷ    | OPTIC_NRV_R     | -         | Max Dose 💷    | Ĭ5400       |               | High 💷   |
| Ŷ    | ORAL_CAVITY     | =         | Mean Dose 💷   | [3000       |               | Medium 🖃 |
| Ŷ    | PAROTID_R       | -         | Mean Dose 💷   | [2500       |               | High 💷   |
| Ŷ    | SPINAL_CORD     | -         | Max Dose 💷    | Ĭ 4200      |               | High 💷   |
| ¢    | SPINAL_CORD_PRV | -         | Max Dose 💷    | [ 4500      |               | High 💷   |



### **AP Spine SBRT**



#### 16 Gy,12 Gy,10 Gy



#### Advance Tool Setting





# Input Planning Goals

| Targe | et Optimization Goals | Dose        |
|-------|-----------------------|-------------|
|       | ROI                   | cGy         |
| *     | T2-4 Tumor 🗖          | <u>1600</u> |
|       |                       |             |

| Org | an At Risk (OAR) Optim | nization | Goals      | Dose   | Volume |          |   |            |
|-----|------------------------|----------|------------|--------|--------|----------|---|------------|
|     | ROI                    |          | Туре       | cGy    | (%)    | Priority |   | Compromise |
| •   | Cord T2-4              |          | Max Dose 💷 | ľ 1350 |        | High     | - |            |
| ¢   | C7 - 74 cord           |          | Max DVH 💷  | Ĭ 1000 | Ĭ5     | High     |   |            |
| \$  | Cord T2-4              |          | Max DVH 💷  | Ĭ900   | Ĭ2     | High     |   |            |
| \$  | Ring_5mm_T2            |          | Max DVH 🗖  | 1400   | Ĭ 10   | High     |   |            |
| \$  | ring_2cm_T2            |          | Max DVH 🗖  | 1000   | Ĭ 10   | High     |   |            |
| \$  | ESOPHAGUS              |          | Max Dose 💷 | Ĭ 1600 |        | High     |   |            |

# Automatic Created Planning Objectives

|                                                | Ĭ 1600                                        | [20 [ | 0.104445                                                                                                                                               |                          |
|------------------------------------------------|-----------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                | I 1600                                        | Ĭ20 ( | 0.0647136                                                                                                                                              |                          |
| ♦ T2-4 Tumor_AP_                               | Ĭ2567.48                                      | ž35 z | 2.80684 <b>e</b> -06                                                                                                                                   |                          |
| TargetSurround_/=     Assd_07 - 14 cc =      N | tax DVH ⊐ ☐ [490.509                          | Ĭ5    | [0.125 0.01674                                                                                                                                         |                          |
| TargetSurround_/=                              | lax Dose 🖃 🗍 [894.451                         |       | 0.125 0.0189307                                                                                                                                        |                          |
|                                                | lax DVH = [ 998.786                           | Ĭ10   | [0.125] 0.013325                                                                                                                                       |                          |
|                                                | lax DVH = 1260                                | Ĭ10   | 1.46928 I.46928                                                                                                                                        |                          |
| ↓ T2-4 Tumor_AP_■                              | SodyMinusTarget Max Dose                      |       | <u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u> | 100 <b>5.63819</b>       |
| ◆ T2-4 Tumor_AP_■                              | BodyMinusTarget     Max Dose                  |       | <u></u> [286.574                                                                                                                                       | 0.0991067                |
|                                                |                                               | = =   | <u>]</u> 900 <u>]</u> 5                                                                                                                                |                          |
|                                                | ♀         Cord T2-4         □         Max DVH | = =   | <u></u> [648.938 ][5                                                                                                                                   | [0.125 0.00602535        |
|                                                | Cord T2-4 I Max DVH                           |       | <u></u> [810 ][5                                                                                                                                       | <u> </u>                 |
|                                                | Cord T2-4 II Max Dose                         |       | Ĭ1215                                                                                                                                                  | 100 0.144602             |
|                                                | Cord T2-4 I Max Dose                          |       | Ĭ 746.603                                                                                                                                              | <u>10.125</u> 0.00694334 |



### Lung SBRT

- É Re-planned 20 SBRT lung cases, 10 for peripheral tumors and 10 for central tumors.
  É Ask physicians to rank quality of AP vs. Clinical plans.
- É 15% AP plans are better, 80% AP plans are comparable, and 5% AP plans are worse than clinically approved plans.



#### Manual Plan











50 35 25 10 Gy



#### **Central Lung SBRT**



## Do We Know What We Want to Achieve in IMRT Planning?



#### CCF Cancer Specific Treatment Planning Guidelines and Dose Constraints

#### Cancer Specific IMRT Treatment Planning Constraints and Guidelines

Cancer Specific IMRT Treatment Planning Constraints and Guidelines

| Patient Name    |                   |
|-----------------|-------------------|
| Patient ID      | Patient Name      |
| Freatment Site  | Patient ID        |
| Prescription do | Treatment Site:   |
| Organ Name      | Prescription dose |
| Organ Name      | Organ Name        |
| CTV_504         | GTV_7000          |
| PTV_504         | CTV_7000          |
| ITV_504         | CTV_7000          |
| KIDNEY          | PTV_7000          |
| KIDNEY          | PTV_7000          |
| KIDNEY          | PTV_7000          |
|                 | CTV_5600          |
| KIDNEY_         | PTV_5600          |
| KIDNEY          | BRAIN             |
| KIDNEY_         | BRAIN             |
| SM BOW          | BRAINSTEN         |
| SM BOW          | BRAINSTEN         |
| SM BOW          | CHIASM            |
| STOMAC          | COCHLEA_I         |
|                 |                   |

|                                                                | Departme                                                                              | ent of Radiation Oncolo                                   | gy Cleveland Clinic |                                           |  |  |  |  |  |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------|-------------------------------------------|--|--|--|--|--|
| 23 forms                                                       |                                                                                       |                                                           |                     |                                           |  |  |  |  |  |
| organ Name                                                     | Enapoint 1                                                                            | constraints                                               | Planned             | comments                                  |  |  |  |  |  |
| CTV_7800                                                       | V7800 cGy                                                                             | > 99%                                                     |                     |                                           |  |  |  |  |  |
| Or                                                             | Foun                                                                                  | d in in                                                   | RTOG                | G/NRG                                     |  |  |  |  |  |
| Or                                                             | Foun                                                                                  | d in in<br>Protoc                                         | RTOG<br>ols         | /NRG                                      |  |  |  |  |  |
| RECTUM                                                         | Foun                                                                                  | d in in<br>Protoc                                         | RTOG<br>ols         | S/NRG                                     |  |  |  |  |  |
| RECTUM                                                         | <b>Foun</b> D10cc V5000 cGy                                                           | d in in<br>Protoc<br><7000 cGy<br>< 30%                   | RTOG<br>ols         | Without pelvic<br>nodes                   |  |  |  |  |  |
| RECTUM<br>RECTUM                                               | D10cc           V5000 cGy                                                             | d in in<br>Protoc<br><7000 cGy<br><30%<br><50%            | RTOG<br>ols         | Without pelvic<br>nodes<br>With pelvic no |  |  |  |  |  |
| RECTUM<br>RECTUM<br>RECTUM<br>FEMORAL HEAD_L                   | D10cc           V5000 cGy           V5000 cGy           V5000 cGy                     | d in in<br>Protoc<br>< 7000 cGy<br>< 30%<br>< 50%<br>< 5% | RTOG                | Without pelvic<br>nodes<br>With pelvic no |  |  |  |  |  |
| RECTUM<br>RECTUM<br>RECTUM<br>FEMORAL HEAD_L<br>FEMORAL HEAD_R | D10cc           V5000 cGy           V5000 cGy           V5000 cGy           V5000 cGy | d in in in protoco                                        | RTOG                | Without pelvic<br>nodes<br>With pelvic no |  |  |  |  |  |

. . . . .

#### Pinnacle plan DVH information

#### CCF Pinnacle <sup>36</sup> Plan Evaluation

| ROI       | EndPoint  | Constraint | Plan      |  |
|-----------|-----------|------------|-----------|--|
|           | (cGy/Vol) | (cGy/Vol)  | (cGy/Vol) |  |
| PTV_6400  | V6400     | >95%       | 95.6%     |  |
| CTV_6400  | V6400     | >98%       | 98.0%     |  |
| PTV_6000  | V6000     | >95%       | 98.7%     |  |
| CTV_6000  | V6000     | >98%       | 99.9%     |  |
| PTV_5400  | V5400     | >95%       | 95.6%     |  |
| CTV_5400  | V5400     | >98%       | 99.2%     |  |
| BRAIN     | D0.03CC   | <6400      | 6649.8    |  |
| BRAIN     | V6000     | <33%       | 0.1%      |  |
| BRAINSTEM | D0.03CC   | <5400      | 2631.5    |  |
| BRAINSTEM | V3000     | <50%       | 0.0%      |  |
| COCHLEA_L | D0.03CC   | <5500      | 1292.6    |  |
| COCHLEA_R | D0.03CC   | <5500      | 4078.8    |  |

| ESOPHAGUS       | DMEAN   | <5000 | 2082.7 |  |
|-----------------|---------|-------|--------|--|
| GLOBE_L         | D0.03CC | <4500 | 1185.0 |  |
| GLOBE_R         | D0.03CC | <4500 | 2448.0 |  |
| LARYNX          | DMEAN   | <3500 | 3417.0 |  |
| LENS_L          | D0.03CC | <1000 | 625.0  |  |
| LENS_R          | D0.03CC | <1000 | 690.6  |  |
| LIPS            | DMEAN   | <3500 | 5129.9 |  |
| MANDIBLE        | D0.03CC | <7500 | 6808.0 |  |
| MANDIBLE        | V7000   | <]%   | 0.0%   |  |
| ORAL_CAVITY_PTV | D0.03CC | <6000 | 6811.3 |  |
| ORAL_CAVITY_PTV | DMEAN   | <3500 | 4354.0 |  |
| PAROTID_L_PTV   | V3000   | <50%  | 22.4%  |  |
| PAROTID_L_PTV   | DMEAN   | <2600 | 1936.1 |  |
| PAROTID_R_PTV   | V3000   | <50%  | 33.6%  |  |
| PAROTID_R_PTV   | DMEAN   | <2600 | 2652.1 |  |
| SPINAL_CORD     | D0.03CC | <4500 | 4148.1 |  |

### Quantitative Plan Evaluation - Score Cards

|   |              |                | ROI  | D             | T∨ne        |      | Dose<br>cGv |        | Volum | e      | Dose<br>cGv | voiune d          | √olume | Dose<br>cGv | Primary C | Goal | Result  |
|---|--------------|----------------|------|---------------|-------------|------|-------------|--------|-------|--------|-------------|-------------------|--------|-------------|-----------|------|---------|
|   | ROI          | Туре           |      | cGy           | Volume      |      | cGy         | Volume |       | cGy    |             | Primary G<br>Dose | ioal   | Result      |           | ,    | Not Met |
| Ŷ | GTV 7200 💆   | Min DVH (%)    |      | Ĭ7200         | Ĭ 99        | %    | ĬO          | ĬO     | %     | 7260.9 | Min         | 99.998            | %      | Met         |           | 5    | Met     |
| Ŷ | ]CTV_7200    | Min DVH (%)    |      | Į7200         | [98         | %    | ĬO          | ĬO     | %     | 7234.6 | Min         | 99.998            | %      | Met         |           | 5    | Met     |
| Ŷ | ]CTV_7200 ⊻  | Min DVH (%)    |      | Ĭ6700         | Ĭ 99        | %    | ĬO          | ĬO     | %     | 7234.6 | Min         | 99.998            | %      | Met         |           | m^3  | Met     |
| ÷ | ĬPTV_7200 ⊻  | Max DVH (cm^3  | 3) 🗆 | Ĭ8200         | Ĭ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 7745.0 | Max         | 0.000             | cm^3   | Met         |           | 5    | Not Met |
| Ŷ | ]PTV_7200 ⊻  | Min DVH (%)    | -    | ]7200         | [95         | %    | ĬO          | ĬO     | %     | 3944.2 | Min         | 95.545            | %      | Met         |           | 5    | Met     |
| Ŷ | ]PTV_7200 ⊻  | Min DVH (%)    |      | Ĭ6700         | Ĭ 98        | %    | ĬO          | ĬO     | %     | 3944.2 | Min         | 99.895            | %      | Met         |           | 5    | Met     |
| Ŷ | jctv_5800 ⊻  | Min DVH (%)    | -    | Ĭ5800         | ] 99        | %    | ĬO          | ĬO     | %     | 5888.7 | Min         | 99.998            | %      | Met         |           | 5    | Met     |
| Ŷ | [PTV_5800 ⊻  | Min DVH (%)    |      | <u>]</u> 5800 | [95         | %    | ĬO          | ĬO     | %     | 1298.7 | Min         | 98.819            | %      | Met         |           | m^3  | Met     |
| Ŷ | BRAIN 🗾      | Max DVH (cm^3  | 3) 💷 | Ĭ7000         | Ĭ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 2606.0 | Max         | 0.000             | cm^3   | Met         |           | 5    | Met     |
| Ŷ | JBRAIN 🗹     | Max DVH (%)    | -    | Ĭ 6000        | ] 33        | %    | ĬO          | ĬO     | %     | 2606.0 | Max         | 0.000             | %      | Met         |           | m^3  | Met     |
| ŵ | BRAINSTEM    | Max DVH (cm^3  | 3) 💷 | <u>]</u> 5400 | I 0.03      | cm^3 | IO          | ĬO     | cm^3  | 1680.7 | Max         | 0.000             | cm^3   | Met         |           | 5    | Met     |
| Ŷ | BRAINSTEM    | Max DVH (%)    | =    | Ĭ3000         | <b>[</b> 50 | %    | ĬO          | ĬO     | %     | 1680.7 | Max         | 0.000             | %      | Met         |           | m^3  | Met     |
| Ŷ | ČHIASM 💆     | Max DVH (cm^3  | 3) 💴 | Ĭ5400         | Ĭ 0.03      | cm^3 | Ĭ0          | ĬO     | cm^3  | 90.9   | Max         | 0.000             | cm^3   | Met         |           | m^3  | Met     |
| Ŷ | ĴCOCHLEA_L ⊻ | Max DVH (cm^3  | 3) 🗆 | Ĭ5500         | Ĭ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 349.7  | Max         | 0.000             | cm^3   | Met         |           | m^3  | Met     |
| Ŷ | ĬCOCHLEA_R ⊻ | Max DVH (cm^3  | 3) 🗖 | Ĭ5500         | Ĭ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 391.3  | Max         | 0.000             | cm^3   | Met         |           |      | Not Met |
| Ŷ |              | Mean Dose      |      | [5000         |             |      | IO          |        |       | 5507.2 | Mean        |                   |        | Not Met     |           |      | Met     |
| Ŷ | ESOPHAGUS    | Mean Dose      |      | <u>]</u> 5000 |             |      | ĬO          |        |       | 2395.9 | Mean        |                   |        | Met         |           | m^3  | Met     |
| Ŷ | ]ĞLOBE_L ⊻   | Max DVH (cm^3  | 3) 💷 | ¥4500         | Ĭ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 248.3  | Max         | 0.000             | cm^3   | Met         |           | m^3  | Met     |
| Ŷ | ĞLOBE_R ⊻    | Max DVH (cm^3  | 3) 💷 | Ĭ 4500        | Ĭ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 237.8  | Max         | 0.000             | cm^3   | Met         |           |      | Not Met |
| Ŷ | JLARYNX ⊻    | Mean Dose      |      | Ĭ3200         |             |      | ĬO          |        |       | 2836.3 | Mean        |                   |        | Met         |           | m^3  | Met     |
| Ŷ | JĬLENS_L ⊻   | Max DVH (cm^3  | 3) 💷 | I 1000        | Ĭ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 126.0  | Max         | 0.000             | cm^3   | Met         |           | m^3  | Met     |
| Ŷ | ]ĨLENS_R ⊻   | Max DVH (cm^3  | 3) 🗆 | I 1000        | [ 0.03      | cm^3 | ĬO          | ĬO     | cm^3  | 125.2  | Max         | 0.000             | cm^3   | Met         |           | m^3  | Met     |
|   |              | May DV/H (amos | »    | 17500         | Ĭnna        |      | Ĭo          | Ĭn     | 1     | 7494.9 | hdow        | 0.000             | amóa   | h dot       |           |      |         |

#### How Are Total MUs Affected



#### **AP for Multiple Brain Mets**

É A patient with multiple brain mets (6 mets)
É Using a single iso-center and five non-coplanar arcs.
É Three RXs concurrently: 30 Gy, 27.5 Gy, and 25 Gy in five fraction.





#### Apply AP to An Unusual Case



Use two iso-centers and VMAT beams to produce the feathering regions.
With AP, dosimetrists can produced this complicated plan with two runs of AP optimizations.

# Magic Button: Cure without Complications

- É Auto-Planning is a promising tool.
- É Auto-Planning will improve plan quality and reduce planning time
- É Leverages dosimetrists human power, relying on the computer for grunt work
- É Auto-Planning will demand more computational power, not human power.

# What types of treatment plans can be created using the auto-planning in the Pinnacle?

| 20% | 1. | Electron plans only            |
|-----|----|--------------------------------|
| 20% | 2. | 3D conformal plans only        |
| 20% | 3. | Step and shoot IMRT plans only |
| 20% | 4. | VMAT IMRT plans only           |
| 20% | 5. | Step-shoot and VMAT IMRT plan  |



# What types of treatment plans can be created using the auto-planning in the Pinnacle?

- <sup>0%</sup> a. Electron plans only
- 0% b. 3D conformal plans only
- 0% c. Step and shoot IMRT plans only
- 0% d. VMAT IMRT plans only
- <sup>0%</sup> e. Step-shoot and VMAT IMRT plans

What is the advantage of auto-planning?

- 20% a. To improve work efficiency
- 20% b. To keep consistency in planning process
- 20% c. To replace dosimtrists entirely
- 20% d. To improve plan quality, efficiency, and consistency.
- 20% e. To learn from previous planning techniques

#### What is the advantage of auto-planning?

| 20% | 1. | To improve work efficiency                            |
|-----|----|-------------------------------------------------------|
| 20% | 2. | To keep consistency in planning process               |
| 20% | 3. | To replace dosimtrists entirely                       |
| 20% | 4. | To improve plan quality, efficiency, and consistency. |
| 20% | 5. | To learn from previous planning techniques            |



#### SAM Question 3

Which answer below includes most features of the autoplanning process

(a)To create models based on previous plans.
(b)To create multiple tuning structures automatically .
(c)To create optimization objectives automatically
(d)To run optimization multiple times
(e) (b, (c), and (d)

# Which answer below includes most features of the auto-planning process

- 20% a. To create models based on previous plans.
- 20% b. To create multiple tuning structures automatically .
- 20% c. To create optimization objectives automatically
- 20% d. To run optimization multiple times
- 20% e. (b, (c), and (d)

#### SAM Question 4

Which statement below summaries common features of knowledge-based planning and auto-planning?

(a) Only knowledge-based planning propagates knowledge from expertsøplanning

(b) There is no common feature between the two methods.

(c) Only knowledge-based planning requires building a new model.

(d)Auto-planning is the same as the conventional IMRT planning.

(e) Both methods can improve plan quality, consistency, and efficiency.

# Which statement below summaries common features of knowledge-based planning and auto-planning?

- ON a. Only knowledge-based planning propagates knowledge from expertsqplanning
- 0% b. There is no common feature between the two methods.
- 0% c. Only knowledge-based planning requires building a new model.
- 0% d. Auto-planning is the same as the conventional IMRT planning.
- e. Both methods can improve plan quality, consistency, and efficiency.

#### Acknowledgment

É Eric Murray, CMD, John Suh, M.D.
É Diana Mattson, CMD. Erin Murphy, M.D.
É Lisa Zickefoose, CMD.
É Matt Kolar. M.S.
É Zhilei Liu Shen, Ph.D.
É Sam Chao, M.D.

Clinical Implementation of Auto-Planning

Ping Xia, Ph.D. Professor of Molecular Medicine Cleveland Clinic, Cleveland

