

Clinical Background of Knowledgebased Models In IMRT/VMAT Planning

Jackie Wu, PhD, FAAPM Professor

Duke University Medical Center Department of Radiation Oncology

Disclosure

- Research Grant: NIH/NCI
- Master Research Grant: Varian Medical System
- Technology License Agreement with Varian.

Motivation

- Extract human expert's knowledge
- Model past planning experience
- Reduce, or even automate the planning process
- Hypothesis
 - Past knowledge and experience has always be applied to new patient case
 - We can mathematically extract and model such application of knowledge and experience
 - Knowledge modeling can help us improve the planning efficiency, consistency and quality.

Elements of IMRT/VMAT Treatment Planning

Knowledge Example: Volume vs. Dose

DUKE University Radiation Oncology

Knowledge Example: Distance vs. Dose

DUKE University Radiation Oncology

Zhu et al, *Med Phys* 38:719-726, 2011 Yuan et al, *Med Phys* 39:6868-6878, 2012

Knowledge Example: Distance-to-target Histogram (DTH)

DUKE University Radiation Oncology

Zhu et al, *Med Phys* 38:719-726, 2011 Yuan et al, *Med Phys* 39:6868-6878, 2012

Knowledge Example: Shape vs. Dose

Anatomy and Dose Features Overview

Site	OAR	Anatomical And Dosimetric Features
Prostate	Rectum Bladder	Distance to target histogram (DTH): PCS Distance to OAR (DOH): PCS OAR volumes PTV volume Fraction of OAR volume overlapping with PTV (overlap volume)
HN	Parotids Oral cavity Larynx Pharynx Spinal cord Brainstem Mandible	Fraction of OAR volume outside the treatment fields (out-of-field volume) Tightness of the geometric enclosure of PTV surrounding OAR Curvature of specific OAR PTV dose homogeneity PTV hotspot OAR DVHs

DVH/DTH Feature Extraction and Dimension Reduction

Principal Component Analysis (PCA)

Predict Dose/DVH Based on Anatomy Features?

Figure 17 A) A example of a DVH of the target B) An example of DVH of the OAR C)

The prescribed dose based on the given DVHs and voxel position

Multiobjective Approach To Morphology-based Radiation Treatment Planning

Boonyanit Mathayomachan, PHD Thesis 2005

Case Western Reserve University

DUKE University Radiation Oncology

- Correlate patient anatomy features (input) with dose distribution features (output)
- Correlate plan design features (input) with dose distribution features (output)
- Understand and translate the knowledge model parameters to the physics/dose parameters
- Extend and refine the Knowledge base with progressive modeling and rapid learning technologies

- Machine Learning of Treatment Planning Knowledge
 - Knowing X1, X2, ,,,,Xm, and Y1, Y2,,,,, Yn,
 Solve: Y(1,2,,,,n) = F(X1,2,,,,m)
 - Multi-regression learning
 - Support vector learning
 - Neural Network learning
 - Many other methods

DUKE University Radiation Oncology

DUKE University Radiation Oncology

Complex OAR Sparing Knowledge Modeling

— Actual Parotid DVH

— Modeled Parotid DVH

DUKE University Radiation Oncology

Example of Bladder DVH Modeling

Example of Bladder DVH Modeling

DUKE University Radiation Oncology

Zhu et al, Med Phys 38:719-726, 2011 Yuan et al, Med Phys 39:6868-6878, 2012

From Models To Planning

Dicom Data Import

🛃 gui_dvh_model			
Case Nar	ne PTV Name	Dx (Gy)	
	PTV50	50	
	Dicom File Directo	ry	
	E:\r1_ui_DVH_model\eclip	ose-export\	Select Directory
	Program Director	y	
	E:\r1_ui_DVH_mo	odel	Select Directory
	Get DVH Constrai	nt	

From Models To Planning

Cross-institution Knowledge

- If we believe best planning knowledge is shared among all planners
- LUNG IMRT Pilot Study By RTOG/NRG
 - 71 Cases
 - 3 Institutions

DUKE University Radiation Oncology

	Mean	Median	Min	Max
Prescriptions (Gy)) 67	64	40	74
		Institution 1	Institution 2	Institution 3
Volume (cm ³)	mean	421	595	512
	median	343	519	379
	min. max	62. 1132	76. 1132	175. 1161
Location (side)	Total	45	10	16
	Left/Left-Medial	18	4	5
	Right/Right-Medial	21	6	10
	Medial	6	0	1

DUKE University Radiation Oncology

Cross-Modality Knowledge Base

Cross-Modality Knowledge

 If you believe best planning knowledge is independent of treatment modality

Institution A

Institution B

"	7-8 min delivery time	"	7-8 min delivery time
" " "	Delivery system: Varian IMRT Planning system: Eclipse Sequential Boost	" "	Delivery system: Tomotherapy Planning system: Tomotherapy SIB
	 Multiple plans (one plan for 1 PTV) 40-50 Gy and 60-70 Gy ~60 head-and-neck cases 	"	 1 plan (one plan cover all PTVs with diff. daily doses) 54.25 Gy and 70 Gy ~60 head-and-neck cases

Knowledge Model Improves Plan Quality

DUKE University Radiation Oncology

Knowledge Model Improves Plan Quality

Original Clinical Plan

Knowledge-Model Guided Plan

DUKE University Radiation Oncology

Summary: What Knowledge Modeling May Help

DUKE University Radiation Oncology

 In Spine SBRT, dose distributions in cord are highly correlated with tumor contour shapes

Contours

Dose Dist.

DUKE University Radiation Oncology

Liu et al, PMB 60:N83-N92, 2015

- Compute correlation between tumor contour shapes and cord dose distributions
- Use learned correlations to predict voxel-level dose distributions

Active Shape Model

 Align the reference tumor contours and all other contours using the iterative closest point (ICP) algorithm

Active shape models

PCA analysis of a set of aligned tumor contours

DUKE University Radiation Oncology

Liu et al, PMB 60:N83-N92, 2015

Optical Flow Dose Distribution Model

 measures dose variance between a reference image and any other images within the training dataset

Active optical flow dose distribution model

PCA analysis of a sequence of optical flow fields

DUKE University Radiation Oncology

Index	D _{2%} (Gy)		D _{5%} (Gy)		D _{10%} (Gy)		D _{0.1cc} (Gy)	
index	Clinic.	Pred.	Clinic.	Pred.	Clinic.	Pred.	Clinic.	Pred.
1	10.1	11.6	9.3	10.7	8.6	9.7	9.3	10.7
2	12.1	11.7	11.8	11.4	11.3	11.1	12.0	11.7
3	14.1	13.7	13.1	12.5	12.1	11.7	13.1	12.5
4	8.9	9.0	8.3	8.3	7.7	7.7	7.8	7.7
5	10.7	9.6	9.6	9.0	8.7	8.3	10.4	9.5
6	9.9	10.5	9.4	10.0	9.0	9.5	9.3	9.8
7	10.7	10.7	10.0	10.0	9.3	9.6	10.9	10.8
8	14.0	14.1	12.6	12.8	11.6	11.9	14.2	14.4
9	10.8	11.3	10.2	10.1	9.6	8.5	9.1	8.1
10	14.1	14.8	13.0	13.1	11.9	12.0	14.4	15.3
11	11.9	11.7	10.6	11.0	9.5	10.3	11.3	11.3
12	10.3	10.1	9.9	9.1	9.5	8.3	9.9	9.0
13	12.4	12.2	11.7*	14.5*	11.1	10.7	11.1	10.7
14	14.3	13.9	13.9	13.6	13.4	13.3	14.1	14.0
15	11.5	11.5	10.3	9.7	9.0	8.6	10.6	10.3
Mean ±std.	11.7 ±1.7	11.8 ±1.7	10.9 ±1.7	11.1 ±1.9	10.2 ±1.6	10.1 ±1.7	11.2 ±2.0	11.1 ±2.2

Summary

- Modeling clinic treatment planning knowledge is feasible
- Various sources of knowledge can be combined
- Multi-center, multi-modality knowledge modeling will help clinical practice in large and small centers and clinical trials
- Knowledge models can assist physicians, physicists and planners
- Knowledge modeling can help to improve plan quality, consistency, as well as efficiency

Acknowledgement

- John Kirkpatrick, MD/PHD (Duke University)
- Brian Czito, MD (Duke University)
- W. Robert Lee, MD (Duke University)
- Bridget Koontz, MD (Duke University)
- David Yoo, MD, PHD (Duke University)
- David Brizel, MD (Duke University)
- Chris Kelsey, MD (Duke University)
- Mark Dewhirst, DVM(Duke University)
- Radhe Mohan PHD (MD Anderson)
- Zhongxing Liao MD (MD Anderson)
- Jaques B. Bluett (MD Anderson)
- Xiaodong Zhang PHD (MD Anderson)
- Michael Gillin PHD (MD Anderson)

- Jun Lian, PHD (UNC)
- Sha Chang (UNC)
- Bhishamjit S. Chera, MD (UNC)
- Larry Marks, MD (UNC)
- Wilko Verbakel, PHD (Vu University)
- Jim Toll, PHD (Vu University)
- James Deye PHD (NCI)
- James Galvin PHD (RTOG)
- Ying Xiao PHD (RTOG)
- Kevin Moore PHD (UCSD)
- Charles Simone MD (U Penn)
- Liyong Lin PHD (U Penn)
- Jeffery D. Bradley MD (Wash U)

Thank You

DUKE University Radiation Oncology

Treatment planning knowledge models are

20% <mark>1</mark> .	Confined to a single institution
20% 2 .	Applicable to multiple modalities
20% <mark>3.</mark>	Useful for only IMRT
20% <mark>4</mark> .	Physician Specific
20% ^{5.}	Useable only with Monte Carlo-based dos calculation algorithms26

Treatment planning knowledge models are

- **1. Confined to a single institution**
- 0% **2.** Applicable to multiple modalities
- 0% **3. Useful for only IMRT**
- 0% 4. Physician Specific
- 0%5.Useable only with Monte Carlo-based dose
calculation algorithms

Treatment planning knowledge models are

- Answer:
- 2
- Reference:

Lian et al, Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: An inter-technique and inter-institutional study, Medical Physics 2013, 40(12)

Machine learning of the knowledge models is useful

20% <u>1</u> .	In quantifying the influence of anatomy fe	atures to t
20%	dose sparing in the OARs	
20% 2.	In defining linac performance	
20% ^{3.}	In predicting dose prescription	
20% ^{4.}	In collecting past cases as database	
5.	In detecting planning errors	

Machine learning of the knowledge models is useful

- 0% 1. In quantifying the influence of anatomy features to the dose sparing in the OARs
- 0% 2. In defining linac performance
- 0% 3. In predicting dose prescription
- 0% 4. In collecting past cases as database
- 0% 5. In detecting planning errors

DUKE University Radiation Oncology

Machine learning of the knowledge models is useful

Answer:

1

Reference:

Yuan et al, Quantitative analysis of the factors which affect the inter-patient organ-at-risk dose sparing variation in IMRT plans, Medical Physics 2012, 39(11)

The organ sparing capability predicted by the knowledge model is

20% <u>1</u> .	The average value of the sparing in the database
20% _{2.}	Interpolated among a few similar cases
20% <u>3</u> .	Independent of prescription dose
20% 4.	Only valid for maximum dose
20% <u>5</u> .	Patient specific, based his/her anatomy and physician sprescription

The organ sparing capability predicted by the knowledge model is

- 0% 1. The average value of the sparing in the database
- 0% 2. Interpolated among a few similar cases
- 0% 3. Independent of prescription dose
- 0% 4. Only valid for maximum dose
- 0% 5. Patient specific, based his/her anatomy and physician **\$** prescription

The organ sparing capability predicted by the knowledge model is

Answer:

5

Reference:

Yuan et al, Quantitative analysis of the factors which affect the inter-patient organ-at-risk dose sparing variation in IMRT plans, Medical Physics 2012, 39(11)

Clinical Background of Knowledgebased Models In IMRT/VMAT Planning

Jackie Wu, PhD, FAAPM Professor

Duke University Medical Center Department of Radiation Oncology

