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Motivation

= Extract human expert’s knowledge

= Model past planning experience

= Reduce, or even automate the planning process
= Hypothesis

= Past knowledge and experience has always be applied to
new patient case

= We can mathematically extract and model such application
of knowledge and experience

= Knowledge modeling can help us improve the planning
efficiency, consistency and quality.
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Elements of IMRT/VMAT Treatment Planning
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Knowledge Example: Volume vs. Dose

Bladder Volume Distribution
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Knowledge Example: Distance vs. Dose
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Knowledge Example: Distance-to-target Histogram (DTH)

= Signed Distance-to-target
histogram (DTH)

(overlap: negative distance)

= Relative geometrical
relationships between OAR
and PTV
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Knowledge Example: Shape vs. Dose

20
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Anatomy and Dose Features Overview

Site OAR Anatomical And Dosimetric Features
Prostate |Rectum Distance to target histogram (DTH): PCS
Bladder Distance to OAR (DOH): PCS
OAR volumes

PTV volume
Fraction of OAR volume overlapping
with PTV (overlap volume)
Fraction of OAR volume outside the
HN Parotids treatment fields (out-of-field volume)
Oral cavit
Larynx Y Tightness of the geometric enclosure of
Pharynx PTV surrounding OAR
Spinal cord Curvature of specific OAR
Mandible

PTV dose homogeneity
PTV hotspot
OAR DVHs
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Modeling Planning Knowledge

= DVH/DTH Feature Extraction and Dimension
Reduction

= Principal Component Analysis (PCA)
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Predict Dose/DVH Based on Anatomy Features?
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Figure 17 A) A example of a DVH of the target B) An example of DVH of the OAR C)

The prescribed dose based on the given DVHs and voxel position

Multiobjective Approach To Morphology-based Radiation Treatment Planning
Boonyanit Mathayomachan , PHD Thesis 2005
Case Western Reserve University
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Modeling Planning Knowledge

= Correlate patient anatomy features (input) with dose distribution
features (output)

= Correlate plan design features (input) with dose distribution
features (output)

= Understand and translate the knowledge model parameters to
the physics/dose parameters

= Extend and refine the Knowledge base with progressive
modeling and rapid learning technologies
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Modeling Planning Knowledge
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Modeling Planning Knowledge

= Machine Learning of Treatment Planning Knowledge

Knowing X1, X2, ,,,,Xm, and Y1, Y2,,,,,, YN,
Solve: Y(1,2,,,,n) = F(X1,2,,,,m)

= Multi-regression learning
=  Support vector learning
= Neural Network learning

= Many other methods
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Parotids modeling by multlple regression (Green) and SVR (Red)
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Modeling Planning Knowledge
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Complex OAR Sparing Knowledge Modeling
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Example of Bladder DVH Modeling

case 1 case 2 case 3 case 4 case 5 case 6

Prostate

0 50 100 50 100 50 100 50 100 50 100 50
Cases case 7 case 8 case 9 case 10 case 11 case 12

0 50 100 50 100 50 100 50 100 50 100 50

case 13 case 14 case 15 case 16 case 17 case 18

a 50 100 50 100 50 100 50 100 50 100 50

case 19 case 20 case 21 case 22 case 23
100

50
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Example of Bladder DVH Modeling

case 1 case 2 case 3 case 4 case 5 case 6
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Database of
Knowledge Model High Quality

Trai i i ng Treatent

Dose/Plan
Features

Anatomy
Features

PCA PCA

Descriptor Response
variables variables
input : X, output : Y.

Model training:
Machine
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DUKE University Radiation Oncology Zhu et al, Med Phys 38:719-726, 2011
Yuan et al, Med Phys 39:6868-6878, 2012



From Models To Planning

Dicom Data Import

Case Name PTV Name

Dicom File Directory

E\r1_ui_DVH_modeleclipse-exporti ‘ Select Directory ‘

Program Directory

Evr1_ui_DVH_model { Select Directory ’

Get DVH Constraint




From Models To Planning




Cross-Institution Knowledge Base

= Cross-institution Knowledge

= If we believe best planning knowledge is shared among all planners

= LUNG IMRT Pilot Study By RTOG/NRG
m 71 Cases

= 3 Institutions
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Cross-Institution Knowledge Base

Mean Median Min Max
Prescriptions (Gy) 67 64 40 74
Institution 1 Institution 2 Institution 3
Volume (cm3) mean 421 595 512
median 343 519 379
Location (side)  Total 45 10 16
Left/Left-Medial 18 4 5
Right/Right-Medial 21 6 10
Medial 6 0 1
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Cross-Institution Knowledge Base
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Cross-Institution Knowledge Base
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Cross-Modality Knowledge Base

= Cross-Modality Knowledge

= If you believe best planning knowledge is independent of treatment
modality

Institution A Institution B

7-8 min delivery time 7-8 min delivery time

Delivery system: Varian IMRT Delivery system: Tomotherapy

Planning system: Eclipse Planning system: Tomotherapy
— Multiple plans (one plan for 1 PTV) — 1 plan (one plan cover all PTVs with
— 40-50 Gy and 60-70 Gy diff. daily doses)

— 54.25 Gy and 70 Gy
e ~60 head-and-neck cases

e ~60 head-and-neck cases

DUKE UniverSity Radiation Oncology Lian et al, Med Phys 40:121704, 2013



Cross-Institution Knowledge Base

Parotid DVH
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Knowledge Model Improves Plan Quality

Three extreme replan cases

45
® Tomo orignal plan
40
35 m Model prediction
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Knowledge Model Improves Plan Quality

Original Clinical Plan Knowledge-Model Guided Plan
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Summary: What Knowledge Modeling
May Help

[ T - (B
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. Planned vs. Modeled
{ Physician J | |

Prescription
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Planning
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Plan_
Evaluation -
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Other Knowledge Models: Dose Models

= In Spine SBRT, dose
distributions in cord
are highly correlated
with tumor contour
shapes

-

DUKE University Radiation Oncology b '
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Other Knowledge Models: Dose Models

= Compute correlation between tumor contour shapes and cord
dose distributions

= Use learned correlations to predict voxel-level dose distributions

Correlation

Contour space - Dose space

Liu et al, PMB 60:N83-N92, 2015

F 2




Other Knowledge Models: Dose Models

= Active Shape Model

= Align the reference tumor contours and all other contours
using the iterative closest point (ICP) algorithm

DUKE University Radiation O
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Other Knowledge Models: Dose Models

= Active shape models

m PCA analysis of a set of aligned tumor contours

Distance
5.00

Mean Shape
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Other Knowledge Models: Dose Models

= Optical Flow Dose Distribution Model

m Mmeasures dose variance between a reference image and any other
Images within the training dataset

7/ Optical Flow
7 Reference Registration
Image
X 2
E(u,,u,)= fqu((l(x+ux,y+uy,t+1) I(x,y, +|Vu, )

Inten81ty constraint Smoothness constraint

+a(VI(x+u VU J+1)— Vl(xvtﬂzdxdv
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Other Knowledge Models: Dose Models

= Active optical flow dose distribution model

= PCA analysis of a sequence of optical flow fields

Mean Dose

o
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Other Knowledge Models: Dose Models

= Machine Learning

m PTV contour space

‘ ’ cord dose space

O\
o .

15t mode ‘l' 2" mode 39 mode

SEalle
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Other Knowledge Models: Dose Models

m
Cllmc. Pred. Clinic. Pred. Clinic. Pred. Clll'llﬂ Pred.
10.1 11.6 9.3 10.7 8.6 9.7 9.3 10.7
R 2 11.7 11.8 11.4 11.3 11.1 120 117
T 14 13.7 13.1 12.5 12.1 11.7 13.1 125
O 8o 9.0 8.3 8.3 7.7 7.7 7.8 7.7
R 107 9.6 9.6 9.0 8.7 8.3 104 95
s X 10.5 9.4 10.0 9.0 9.5 9.3 9.8
10.7 10.7 10.0 10.0 9.3 9.6 109 108
T 140 14.1 12.6 12.8 11.6 11.9 142 144
o 108 11.3 10.2 10.1 9.6 8.5 9.1 8.1
| 10  [EEUE 14.8 13.0 13.1 11.9 12.0 144 153
DR 119 11.7 10.6 11.0 9.5 10.3 113 113
Dt 103 10.1 9.9 9.1 9.5 8.3 9.9 9.0
T 124 12.2 11.7% 14.5* 11.1 10.7 111 107
T 143 13.9 13.9 13.6 13.4 13.3 141 140
| 15 K 11.5 10.3 9.7 9.0 8.6 106 103
11.7 11.8 10.9 11.1 10.2 10.1 11.2 11.1

tstd. +1.7 +1.7 +1.7 +1.9 +1.6 +1.7 2.0 2.2 -



Summary

= Modeling clinic treatment planning knowledge is feasible
= Various sources of knowledge can be combined

= Multi-center, multi-modality knowledge modeling will help clinical
practice in large and small centers and clinical trials

= Knowledge models can assist physicians, physicists and
planners

= Knowledge modeling can help to improve plan quality,
consistency, as well as efficiency
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Thank You
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Treatment planning knowledge models are

20% 1. Confined to a single institution

20% 2. Applicable to multiple modalities

20% > Useful for only IMRT

s0% 4 Physician Specific

>0,  Useable only with Monte Carlo-based dose

caleulationalgorithms26

f10
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Treatment planning knowledge models are

0%

0%

0%

0%

0%

1. Confined to a single institution

2. Applicable to multiple modalities
3. Useful for only IMRT

4. Physician Specific

5. Useable only with Monte Carlo-based dose
calculation algorithms
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Treatment planning knowledge models are

= Answer:
m 2

= Reference:

Lian et al, Modeling the dosimetry of organ-at-risk in head
and neck IMRT planning: An inter-technique and inter-institutional
study, Medical Physics 2013, 40(12)
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Machine learning of the knowledge models
is useful

20% 1 In quantifying the influence of anatomy features to t
dose sparing in the OARS

20%

S0y~ Indefining linac performance
0

7t predicting doSe prescription
20%

5. In detecting planning errors
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Machine learning of the knowledge models
is useful

0% In quantifying the influence of anatomy features
° to the dose sparing in the OARS

0% 2 Indefining linac performance
0% 3 Inpredicting dose prescription
0% 2 Incollecting past cases as database

0% s Indetecting planning errors
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Machine learning of the knowledge models
is useful

= Answer:

1

= Reference:

Yuan et al, Quantitative analysis of the factors which affect
the inter-patient organ-at-risk dose sparing variation in IMRT plans,
Medical Physics 2012, 39(11)
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The organ sparing capability predicted by
the knowledge model is

20% 1. The average value of the sparing in the database

20% > Interpolated among a few similar cases

20% = Independent of prescription dose

20% +  Only valid for maximum dose

20%  Patient specific, based his/her anatomy anc

physician’s prescription
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The organ sparing capability predicted by
the knowledge model is

0%
0%
0%
0%

0%

The average value of the sparing in the database
Interpolated among a few similar cases
Independent of prescription dose

Only valid for maximum dose

Patient specific, based his/her anatomy and
physician’s prescription
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The organ sparing capability predicted by
the knowledge model is

= Answer:

= b

= Reference:

Yuan et al, Quantitative analysis of the factors which affect
the inter-patient organ-at-risk dose sparing variation in IMRT plans,
Medical Physics 2012, 39(11)
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