

Current Practice and Future Directions (MR Testing and Quality Control)

By Kathryn (Kat) W. Huff, M.S., DABR Prepared for Spring Clinical AAPM Meeting 2015

Validating Me

- I began my career at Baylor Medical Center in Dallas, Texas and quickly dove into consulting
- I own a consulting group based in Florida
- I performed approximately 1200 annual evaluations in 9 years with over 200 magnets in one year (now 130 scanners/year)
- I have given CAMPEP accredited lectures to individual consulting groups & MTMI and performed hands on training with these groups as well
- I am now a serial AAPM presenter
- I am the self proclaimed Low Field Magnet Whisperer!
- I have no affiliation with any particular vendor, nor the ACR – aside from membership

- Intersocietal Accreditation Commission
 - As of 7/15/2014 –
 - "The Quality Improvement (QI) Program <u>must</u> consist of MRI system installation acceptance testing and acceptance testing following a major upgrade."
 - "The manufacturer's representative, service engineer, or the MRI site-appointed medical physicist, or qualified expert <u>must</u> perform the acceptance testing."
 - Medical Physicist not explicitly defined

Intersocietal Accreditation Commission

- Required Tests:
 - Magnetic Field Homogeneity
 - Gradient and RF Calibration
 - Resonance Frequency
 - Slice Thickness
 - Slice Accuracy
 - Image Quality
 - signal-to-noise ratio (SNR) evaluation for all coils
 - spatial resolution
 - artifact assessment
 - Image Uniformity
 - Image Linearity (Geometric Distortion)
 - Monitor/Processor QC

Accrediting Organizations

• The Joint Commission

- As of 7/1/2015
- "At least annually, a diagnostic medical physicist or magnetic resonance imaging (MRI) scientist conducts a performance evaluation of all MRI imaging equipment."
- "Note: Medical physicists or MRI scientists are accountable for these activities. <u>They may be assisted</u> with the testing and evaluation of equipment performance by individuals who have the required training and skills, as determined by the medical physicist or MRI scientist."

- The Joint Commission
 - Required Tests:
 - Image uniformity for all radiofrequency (RF) coils used clinically
 - Signal-to-noise ratio (SNR) for all coils used clinically
 - Slice thickness accuracy
 - Slice position accuracy
 - Alignment light accuracy
 - High-contrast resolution
 - Low-contrast resolution (or contrast-to-noise ratio)
 - Geometric or distance accuracy
 - Magnetic field homogeneity
 - Artifact evaluation

- The American College of Radiology
 - "The Annual System Performance Evaluation or Acceptance test <u>must</u> be performed by a medical physicist/MR scientist and the full report (including all data pages and evaluation of site's technologist QC program) must be submitted for review."
 - Very specific about what constitutes a QMP or MRI Scientist

- The American College of Radiology
 - Required Tests:
 - Magnetic Field Homogeneity I discussed in depth at the Spring Clinical in 2013 and Summer Meeting 2013. If you would like a copy of my presentation and supporting documents, please email me
 - Slice Position Accuracy
 - Slice Thickness Accuracy
 - Radiofrequency Coil Checks
 - Soft-Copy Displays (Monitors)

- Physicist's Annual QC Tests
 - Magnetic Field Homogeneity I discussed in depth at the Summer Meeting 2013
 - Slice Position Accuracy Will briefly discuss failures
 - Slice Thickness Accuracy
 - Radiofrequency Coil Checks
 - Soft-Copy Displays (Monitors)

If wedge is long on same side: positioning error

- If longer bar on LEFT, move slice prescription UP
- If longer bar on RIGHT, move slice prescription DOWN
- Note: If > 4mm off on slice 11, LCD test is completely invalid

Move these prescription lines up or down depending on which side is long

www.FusionPhysics.com

• If wedges are long on opposite sides: gap error - service must be called to correct

- Physicist's Annual QC Tests
 - Slice Position Accuracy Typically this test fails by exceeding the allowable 5.0 mm (again LCD test is invalid if more than 4.0 mm off)
 - This is typical of GE, open scanners
 - Historically: Adjusted position of phantom, slices, etc., to no avail
 - Current Practice: ask service to adjust the table axis gradient (Y) by 2.0 mm (normally, prior to arrival on site)
 - Works like a charm but no more than 2.0 mm

Open Magnet Note: Y Gradient is along the table axis

- Physicist's Annual QC Tests
 - Magnetic Field Homogeneity I discussed in depth at the Summer Meeting 2013
 - Slice Position Accuracy
 - Slice Thickness Accuracy Will briefly discuss failures
 - Radiofrequency Coil Checks
 - Soft-Copy Displays (Monitors)

- Physicist's Annual QC Tests
 - Slice Thickness Accuracy Typically this test fails by exceeding the allowable 5 mm +/- 0.7 mm
 - This is typical of Siemens, all models
 - Historically: filters, bandwidth, gradient strength and mode were adjusted, to no avail
 - Current Practice: ask service to adjust the Z gradient by 0.5 mm
 - Works like a charm but no more than 0.5 mm

- Slice 7 on a Siemens scanner
 - doesn't appear uniform
 - there appears to be cross talk from slice 8
 - slice thickness is too large!

Closed Bore Gradient Direction Note: Z Gradient is table axis

www.FusionPhysics.com

- Physicist's Annual QC Tests
 - Magnetic Field Homogeneity
 - Slice Position Accuracy
 - Slice Thickness Accuracy
 - Radiofrequency Coil Checks 2004 ACR Manual says on <u>ALL</u> RF coils! Be sure to include serial number and gain of every coil, so that you know you are actually tracking coil performance

– Soft-Copy Displays (Monitors)

- Decide on your methodology and be consistent
 - Some vendors provide step by step coil testing manuals (Siemens & Fonar)
 - Foam pads for proper positioning of phantoms
 - Analysis of results (Hitachi analyzes ACR Phantom)
 - The ACR manual shows a method for independent testing
 - Useful for vendors who don't provide manuals
 - As a consultant who tests every vendor, this is my preference

- My thoughts:
 - As a hired consultant, I believe the physicist should be a third party, independent verification that the system is working properly
 - For this reason, I test MFH and coils differently than service
 - I remove all pads because pads change over time, get lost or disposed of and replaced
 - I track coil performance for 3 years via SNR

- Fonar is the only exception to my rule
- Fonar has a built in PDF in the help menu that shows coil positioning for annual testing.
 Keep the PDF open while scanning, it will change your life.
- Fonar only supplies 1 bottle phantom with their coils and a soccer ball for MFH testing on the 55 inch torso array coil

- Some physicists say that every element must be tested individually (Conservative)
- Others state there is no need for annual testing of the coils by a medical physicist – that this should be left up to the MRI Experts, the service engineer (Liberal)
- I lean toward conservatism I test the maximum SNR of every coil and visually inspect all coil elements

- The phantom of choice should mimic the geometry of the body part that the coil is used to scan
- Many vendors provide lots of phantoms specific for each coil
 - These phantoms have become quite elaborate
 - Many phantoms require a holder to properly position the phantom within the coil

- The substance in the phantom should have a T1 value within the range of those similar to the tissues which is dependent on field strength
- The phantom should also fill a good portion of the coil but also allow for some noise measurement to be made
- It is best to use phantoms that are stored on site
- But you should always keep phantoms with you, just in case!

- Toshiba Some scanners only have a QA cube for testing coils. Believe it or not, this produces excellent SNR
 - You may need to bring your own phantoms for testing larger coils
- DO NOT use a Zephyrhills water bottle ask the site first if they only have the cube phantom, if not bring your own phantoms.

- The ACR specifically details the parameters that are required for collection of the ACR phantom images within the head coil (SE with a TR=500 ms, TE=20 ms and typically a FA=90 degrees – leading to a scan time = 2+ min)
- You can adjust the TR (I drop it to 300 ms) and scan time plummets to a mere 1 min 16 sec!
- The ACR manuals suggests adjusting the matrix to clinically relevant limits in an effort to save time as well.

- FOV must be appropriate for the Coil i.e. a lumbar coil requires a 35 cm FOV clinically, be sure to test it that way, whereas a wrist coil may use only 12 cm FOV clinically
- Be sure that FOV is large enough to include background noise measurement
- Slice Thickness should also be clinically relevant
- All parameters should be included in the report for reproducibility from year to year

- Volume coils have been designed to image body parts placed within their volumes (head coils, body coils, knee coils, wrist coils)
- Volume coils produce uniform images where MR signal should minimize at the center of the image
- My rule of thumb is if the coil in question can be turned on end and liquid poured into it, does it constitute a volume?

Volume Coil???

www.FusionPhysics.com

- Don't forget to test the internal body coil!!!
- It is used for LARGE patients and long leg studies

Volume Coils

• Wrist Array Coil

8 Channel Knee Coil

Volume Coils

- Ideally the phantom should be placed at isocenter within the coil AND isocenter within the magnet to determine the best uniformity and to ensure reproducibility from year to year AND phantom should fill at least 75% of the area on the display FOV
- Tests that are run include 3 measurements:
 - Image uniformity
 - SNR
 - Percent signal ghosting

Volume Coils

- How I test volume coils:
 - I set up the phantom and coil at isocenter (as much as possible)
 - I run a 3 plane loc
 - I plot the modified ACR T1 (modifications include drop in TR to 300, drop # of slices to 1 and use a clinically relevant FOV) off of the axial plane loc
 - I run the T1 in the axial plane to ensure uniformity measurement would be correct. Time should be 1 min approx. 16 sec per coil

Wait for it....

Image Uniformity

- Lack of uniformity suggests a deficiency in the scanner, with the coil itself or in the RF subsystem
- 8 Channel Brain Coil requires Surface Coil Intensity Correction (GE- SCIC, Siemens – Normalize, Philips – Clear) to pass ACR's uniformity criteria
- Run with SCIC on to pass Uniformity AND THEN run with SCIC off to test individual coil element performance

- Measure Mean with an ROI that is 80% of area, Maximum & Minimum both measured with an ROI that is 0.15% of the area of the FOV
- Max & Min should be truly the first and last signal visualized when leveling

Percent Image Uniformity (PIU) = $100 \times 1 -$

Action criteria: PIU should be 87.5% on all units less than 3T and 82% on 3T magnets

- Causes of Uniformity Failure
 - 1st Check that SCIC, PURE, Normalize or CLEAR are on
 - 2nd Check that the top of the head coil is securely fastened to the bottom of the head coil
 - 3rd Check that the phantom is centered within the coil and is NOT touching the coil (this can cause signal blow up)

- Record the Mean of large ROI
- Move the small ROI to determine the <u>minimum</u> STD of the noise ROI and record this value

Measuring Noise

- Do NOT measure in regions of nonuniformities due to bandwidth limiting filtering, truncation of background signal and RF filtering of signal at the edges of the frequency encode range
- Be sure that the ROI that is used to measure the noise standard deviation is free of artifacts and is within the image

S 200

Signa 0.7T SYS#MTMR Ex: 26138 Se: 9 Im: 1 Sag L5.6

Window/Level so that you can see where you are making your noise measurement! 100 09-0909990 Apr 23 2012 Acc Num:0909009

Acc Num:0

Mag = 1.0

www.Fusi

All things equal except noise value... This shows nearly 30% difference! So always look for minimum noise!

$SNR = \frac{Mean Signal}{Noise Standard Deviation}$

Action criteria: Values are all over the board! Action limits should be set at 20% from previous measurement

-only if consistent testing methodology is used -if you are not consistent this value will not be meaningful

Percent Signal Ghosting Measurement

- Record the ghosting signal, whichever is higher
- Most frequently this is in the phase encode direction, but not always!

Percent Signal Ghosting = $100 \times \left[\left(\frac{Ghost Signal - Background Signal}{2 \times Mean Signal} \right) \right]$

Action criteria: Should be less than 0.25%

Defining a Surface Coil

- Enhances SNR by sacrificing uniformity
- Increases SNR by placing the coil as close to the area of interest as possible
- Excludes both signal and noise from regions not under investigation
- Maximizes the sensitive region of the coil AT the area of interest
- These coils yield very non-uniform images

Surface Coils

Shoulder Coils – Large&Small

Siemens Flex Body Coil

www.Fusic

Image Courtesy of Siemens

Surface Coils

- How I test surface coils:
 - I set up the phantom(s) and coil so that there are no pads
 - I run a 3 plane loc keep in mind the coronal loc may show nothing because we are not at isocenter of the bore!
 - I plot the modified ACR T1 (modifications include drop in TR to 300, drop # of slices to 1 and use a clinically relevant FOV) off of the sagittal plane loc
 - I run the T1 in the sagittal plane. Time should be 1 min approx. 16 sec per coil

Surface Coils

- Window to zero, raise level to last signal
- Create an ROI that is 0.15% of the area of the FOV
- Move ROI to the location of maximum signal
- Move the ROI to the Noise region (again, typically in the corner of the image) and record the smallest standard deviation visualized

$Maximum SNR = \frac{Maximum Signal}{Noise Standard Deviation}$

Action criteria: I personally track this measurement as a percent change from the previous year's measurement. 20% is flagged by my spreadsheet

- Tracking SNR from year to year indicates a problem with the coil, multi year evaluation is even better
- If SNR drops 20% across all coils check the lightbulbs, check the lightbulbs!!!
- if CFLs were used to replace the old lightbulbs, that will cause a 20% drop in signal
 - These CFLs cause an RF leak

NV Coil

Invivo Chimney Coil

Foot/Ankle Coil

Testing the Breast Coil

with 2 plastic discs that set inside the coil with 2 small sphere phantoms

This coil comes

Biopsy Breast Coil

Testing the Breast Coil

- Test both sides of the coil simultaneously
- Maximum SNR
- Look for artifacts
- Be sure to compare the breast coil performance bilaterally!
 - Maximum Signal should be roughly equal on both
 - Noise should be equally minimal on both

- If the site is breast accredited, you, the QMP are responsible for establishing the breast coil QC program
- Minimally, the site should track
 - artifacts
 - Bilateral signal intensity (via visual inspection only)
 - Bilateral noise (via visual inspection only)
 - Gain on the coil

Annual System Performance Evaluation

- Physicist's Annual QC Tests
 - Magnetic Field Homogeneity I discussed in depth at the Summer Meeting 2013
 - Slice Position Accuracy
 - Slice Thickness Accuracy
 - Radiofrequency Coil Checks
 - Soft-Copy Displays (Monitors)

Monitor Evaluation

- MRI is OBVIOUSLY a contrast based modality so it is important for us to verify that any and all contrast comes from the image itself NOT from variations within the monitor
- For this reason, we must test the uniformity of the monitor

Luminance Uniformity

Monitor Evaluation

% Difference = $200 \times \frac{Lmax - Lmin}{Lmax + Lmin}$

- Luminance Uniformity All four corner measurements should be within 30% of the maximum brightness at the center of the monitor
- The maximum brightness should exceed 90 Cd/m²
- The minimum brightness should be less 1.2 Cd/m²
- Resolution: 100% Contrast
- Spatial Accuracy: + 5 mm

- We need to see a 10% gradation change
- You should clearly and equally visualize the 5% and 95% blocks.

Scanning the Phantom for Submission

- You have done all your coil testing and now need to collect phantom images for submission
- What you MUST submit are a ACR Sag Loc, ACR T1, ACR T2, Site T1 and Site T2
- The ACR series are specific parameters that have little flexibility

- The ACR Sag loc and the ACR T1 are both spin echo sequences, which are the bread and butter of MRI
- The ACR T2 is a double echo, which is completely irrelevant in clinical imaging anymore (no one uses it). Mostly due to the extremely long scan times.
- You MUST scan the phantom according to the site protocols and this can get a little tricky

TSE/FSE

- Choosing the Site T1 & T2 the TSE or FSE is best for scanning the phantom, but again you MUST use what the site is using
- The TSE is very susceptible to motion due to the speed with which the image is made, be careful to pad the phantom to minimize motion artifact. You will see some artifact but you should do what you can to reduce it.

FLAIR

- Many sites are going away from the SE for their site T1 (which accents fat) and using a FLAIR sequence for Axial Brain Imaging
- T2s show fluid brightly, but in T1 imaging, we want to suppress fluid
 - a FLAIR sequence is Fluid Attenuation Inversion Recovery which suppresses fluid is utilized (keep in mind FLAIRs can also be used as T2s by suppressing free water and accenting fluid from edema)
- FLAIRs are great for suppressing CSF (cerebrospinal fluid) and accentuating MS lesions, for example

- What you need to know:
- Standard line by line filling of k-space is replaced by radial k-space filling with the use of a multishot radial acquisition technique
- Siemens "BLADE", GE "PROPELLER"
- Great for patients with Parkinson's
- Bad look on phantoms

Image Courtesy of GE

STIR

- Also in your bowl of alphabet soup, you should be familiar with the STIR sequence
- This is used as a poor man's fat sat
- All the advanced scans that the ACR is requiring clinically now require some sort of fat saturation. Current scanners with newer technology do not struggle with this, but older scans that do not have fat sat must compensate by running STIRs (short tau inversion recovery)
- STIRs are very important where we want to eliminate fat (i.e. abdominal imaging & breast)

- A special, RF pulse having a narrow band of frequencies centered on the resonant frequency of fat can be applied before executing the MR pulse sequence
- This will "saturate" the fat molecules so that they generate no signal when you excite tissue with the ordinary excitation RF pulse with a wider band of frequencies
- The special RF pulse is known as a Fat Saturation pulse, sometimes referred to as "fat sat". If the resonant frequency of fat does not match the special RF pulse, fat sat will fail, and some of the fat will be bright on the image. Failures can result from poor uniformity of the magnetic field of the scanner.

Bright Fat

- We'll take a brief look at a few artifacts I've helped troubleshoot or that my clients have come across recently
- If you see these in your practice, by all means, try these solutions
- If you see any new artifacts, please send them my way!

Knee

- These artifacts appear on shoulders and knees if you've had a recent upgrade to your software
- This maybe classified as a Spike in k-space artifact
- Solution: Contact Siemens immediately, alert them you have a corrupt file and they will reload the software

- Commonly seen with single shot sequences with long echo trains and large number of refocusing RF pulses
- Increase in Larmor Frequency correlates with increase in the magnetic field strength
- Wavelength shortens as frequency increases
- Wavelength on 3T is 26 cm which is similar to the dimensions of an adult abdomen, resulting in a greater chance of negative interference

3 Tesla

1.5 Tesla

Appearance:

- Large-scale signal non-uniformity
- Shading often near center of field of view

• Causes:

- Variation in tissue conductivity
- More prominent with higher field strength scanners(e.g., 3T)

• Common Occurrences:

- Abdominal imaging
- Spinal imaging
- Imaging of large water volume (e.g., pregnancy or obese patients)

- This is a phase encoding motion artifact.
 Image three, at the level of C6, looks as there is an enhancing neoplasm within the cord
- Change the phase encode direction (this is the trick of the pros)
- Was determined to be a pulsatile artifact from the heart.

Toshiba Service wrestled with this artifact for some time Applied a filter to eliminate the pock

mark artifact

Kat Huff – cell – 813-455-1894 email - kat@fusionphysics.com

Center Frequency and Gain on all Vendors

By Kathryn (Kat) W. Huff, M.S., DABR

Tracking Center Frequency and Gain

- You must know where to find CF in order to calculate MFH via the bandwidth methodology
- And to establish the technologist's QC program, you must be able to show the tech where to find CF and Gain on their system
- The next slides show how to do that on every vendor and software package that I have encountered

- This could not be easier on the GE scanner select the idle button then while the T1 is scanning, in the upper left hand corner AX is displayed, as is TG.
- AX is center frequency and TG is transmitter gain
- Or you can use the text page button below if the scan is already complete – see next slides

Always choose ACR T1

New GE Software

1) Make sure the ACR T1 is indented with the black box selecting the scan. This is best collected after the scan has been run, BEFORE the coil is changed!

Siemens

2) Choose Transmitter/Receiver tab

60	Scan Time: 5	2:10 Vo	xel size: 1.	0×1, I×5.0 [mm]	Rel. SNR: 1.00	se	
	Common	Adju	stments	Transmitter/F	Receiver		1
		Transmit	tter		Receiver	r	47
0 0	Frequency Ref. amplitude	[1H] 63.692704 [1H] 150.728	[MHz]	4) CF on top amplitude r	and Gain (aka neasured in V)]	Q
Q	Correction Puls	factor 1 Amplitude		Coil elements	FFT scale factor		T.
08:34	SRFExcit[1H] SRFRefoc[1H]	74.756 160.733		HE	0.768		╼╴ ┙┝┑┥┝┑┝
		Reset		3) Confirm you are	which coil testing		
E 08:34	1) Choose sy	stem tab	olution Geo	metry System	Physio Inline Se	quence	14%
NM				Ð # Š	stem Parameters	2/1/201	12 2:33:33

Siemens New Software

ot 🔸	TA: 0:14	PM: REF	PAT: Of	f Voxel siz	re: 1 6×1 6	x5 0 mm	Rel		. 4	
							INGI, QI	1.00	. 11	
	Coils	M	iscellaneou	is Adjus	stments	Adjust	Volume		Tx/Rx	
			Transn	nitter				Rece	iver	0
00:24	Free	quency 1H	63.67444	0 MHz			Gain Hig	h	-	
	? Ref. am	plitude 1H	0.000	v.						
00:14	Corre	ction facto	1			Img. Scale	e. Cor. 1.0	00		
00:14	Puls	An	nplitude							
00:14	SRFExcit 1	H 6	4.359							M
00:14										
00:14										0%
			Res	81				Reset		lines.
Σ 01:34										
	Program I	Routine	Contrast R	esolution Geo	metry Sy	stem P	hysio	Inline	Sequence	
NM MR Sca	nner not ready.	Reboot sc	anner. If the	problem still p	ersists (")			2/3/201	2 7:54:48

- If Maintenance card is not at the bottom of your list, put it there!
- Hit Maint button in
 - the center

ere!	Scall 13	
	Images from 13	
in 🛛	ACR SE PD/T2 AX	
	Scan 16 Images from 13	
	ACR TI AX	
	Scan 17 Images from 13 ACR FSE T2 AX	
	Clinical Study Lib	Modify
	Scan 2D	3D
1	Data Maint	Analysis
www.FusionPhys		

- Choose SysMaintCard then hit done
- Under ACR protocols there will be a Maint tab

 see next slide

			Maintenance Card I	library
Selection Mode	Single	Multiple		
Name	Region	Synopsis		D
SysMaintCard	-			Syst

Hitachi

Hitachi New Software

ergency Patient (testacr) - Bra

1 2· 0 4

Name	Time dit	View Queue Overlays Controls Tool					
ACR Week ly	11:06	Patient and Study Protocol Window					
🖌 🔿 Scanogram	00:19 / S	 ✓ Output Series ✓ Input Series 					
🖌 🔊 ACR T1 Sag	00:53	Default Window Positions Save Window Setting	Time 💋				
V 🔊 ACR TI 🤗	01:19	Annotation	11:06				
Review Task		Inset Image	00:53				
V 🔊 ACR T2 AX	08:35 ICF	Gray Scale/Colorby Image Properties	01:19				
	ACI	R 1 ✓ Synchronous Scroll Expand to Display Area Maximize Image	08:35				
		Toolbars					

Hitachi New Software

r 🖬 S			0 🛛 🗗							E	Envergenc.	Emergenc.				
atient Dire	ctory															6
Refresh 9	Start Examination	Q Study Date A	II Search View	Preview Image	Thumbnails	CD-I	2 Drive		~							
nt List Modalit	y Worklist Managemen	1		-		-										2000
I Database	_															
udy Date 🔻	Study Time	Patient Name	Patient ID		Accession Numb	er Sti	dy Description				Images	Anatomy	1	0 0		On
10/12/2010	08 11 33	Emergency Patient	20101012-122201	80095, 2001942	Call Street		and the second	1.000			37	Brain				
10/12/2010	07 45 58	Emergency Patient	20101012-122201	80096300. 346		-					37	Brain				-
10/11/2010	18 06 52	Cortezrivera Hecto	A1+GSM0004339	10	GSM3527682	MR	MRI LWR EXTN	ION-J	T W/O W/CON-LEF	T	401	Lower Leg		2		Fla
10/11/2010	17:04:53	Torrescruz Jaime	GSM000736021		GSM3527608	MR	MRI LWR EXTR	ALOL S	NT W/O CNTRST-LE	FT	242	Knee				We
10/11/2010	16/23/13	Torrescruz Jaime	GSM000736021		G (1527609	MR	MRI LWR EXTR	NIOL S	NT W/O CNTRST-RIC	THE	243	Knee	2	t l		We
10/11/2010	15:50:17	Torrescruz Jaime	GSM000736021		GSMB. 76	MR	MRI LUMBAR	SPINE	W/O CNTRST		105	L-Spine				We
10/11/2010	145415	Smith Virginia	GSM000242391		ASMA527	MR	MART I LIMARARS	DINE	W/O CNTRST		102	L-Spine	Later 1	£	and the second second	Lag
10/11/2010	13 46 13	Viola Anthony	GSM000736165	# Patient	Information Pr	operties		X	I/CNTRST		386	Chest				
(10/11/2010)	(12.46.06)	Shoor Bette	GSM000342022		and the second second				W/O CNTRST		0	L-Spine		-		Wei
10/11/2010	12-14-35	Shoor Bette	G.SM000342022	Patient Stud	y Series Image		and the second second		ELVIS		207	L-Spine				Wei
10/11/2010	11 45 42	Shoor Bette	GSM000342022			Value			TRST		193	General Pe	dvia i	Concentration II		Wei
10/11/2010	10.4451	Grown Martin	GSM000364087	Pagene Parcent Samo	log	30			O & W/CNTRST		921	Vascular				Mo
10/11/2010	10.12.20	Grunn Martin	G.SM000364087	Number of Ph	ase Econdine Steps	256			E W/O & W/ONT		188	C-Spine	-	AND DESCRIPTION OF		Mos
10/11/2010	10 12 30	Grups Martin	GSM000364087	Spacing Petro	een Slices				O CNTRST		244	Vascular				Mor
10/11/2010	100010	Bessenut Quido	0.51000698967	Magnetic Fiel	d Strength	116			W/O CNTRST		404	L-Spine	manner	- merene -		Smi
10/11/2010	08:40:23	Rosengurt Gamo	Gomereseever	Imaged Nucle	us	1H								Carlos and		
				Imaging Frequ	Jency	49.376712										
	10000000000000	Concernence Dationt	10/12/201 D Review	Post Pro Number of Av	rerages	1				ACR	TI AXIAL	2DSE				
101012-12220	118003030001842	citier gency Fallein	Contra Data Tin A Segue	Aneio Flag		False				1	Time	1	Positi	Contrast	Plane	FOV
#	Series Name		Series Date 11 Oeque	Sequence Na	me	SE	6			1	08 16 08		55 98 45 98	off	AA	250
1	Scanogram LeaKB	asic)	0/12/2010 08 11 37 2DGE	Dual Sice Fi	24	off				2	08 16 08	•	45.96	off	AA	250
2	Scanogram Leaf(B	asic)	10/12/2010 08 11 37 20GE	Sep Ratio		1.0				3	08 16 08	-	35.96	ott	AX	250
13	Scanogram Leaf(B	asic)	10/12/2010 08 11 37 2055	Echo Train Li	and th	2				4	08.16.08	•	23.96	on	AX	250
14	ACR SAG LOCAT)R	10/12/2010 08 13 36 2036	MR Acquisits	on Type					5	08 16 08	-	13.96	no	AX	250
5	ACR TI AXIAL		10/12/2010 08 18 08 20 30	Skip Beats		1				6	08 16 08		0.90	off	AY	250
16	ACR TI AXIAL-2		10/12/2010 08 18 51 20 56	Acquisition C	lontrast	Unknown		-		7	08 16 08		4.04	off	AY	250
17	ACR TI AXIAL-3		10/12/2010 0822:51 2036	Multi Fritin N	धनरेजन					8	08 16 08		14.04	off	AY	250
				T to chan	te bioberine					9	08 16 08		24.04	011	AX	250
				Set display I	properties Settines.					10	08-16-08		44.04	off	AX	250
						a	Carcel Acc	dy .		11	08.16.08					

Hitachi New Software

#Patient Information Properties

ime	Value
R	500
E	20
I	
Number of Averages	
Imaging Frequency	49.41006
Imaged Nucleus	1H
Echo Number	1
Magnetic Field Strength	1.16
Spacing Between Slices	10
Number of Phase Encoding Steps	256
Echo Train Length	
Percent Sampling	
Percent Phase Field of View	100
Contrast Volume	0
Contrast Start Time	-
Delay Time	

Patient Study Series Image	
	L) (= b ==
Name	value
FatSat Offset Freq.	
FatSat Wave	-
Fat Sep Image Type	-
Filter type	-
FlowEncode axis	-
FSE Theta Correction Value	0, 0, 0
Gain	12
RFoil	-
RF Gain	182
MTC RF amp.	-

Philips

PHILIPS	P	Sc 3	
Patient	System Help	07:16 SE/I	Л
10 (T)	Advanced View	wing	
01/25/1	Queue Manag	er	
SAGLOC	Print Job Contr	ʻol	
01/25/20	HC Protocols		
	Screen Captur	e	
Planscan	Advanced Too	ls P	
Geometr	Scan Definition	n Context 🔸	
	Bumping Polic	<u>ý</u>	
Delete	FPR Utility		
Z Volue	Show Taskbar		
Volui	Exit		
-	110 -		

 Under previous scan choose #8, then click on double arrows until you see sp_proton_freq and SP_receiver_att

	Prev. Scans : Display SPTT	XT pars.	head coil - physics
Imaging Spectro	SP_b1_ex SP_b1_echo SP_b1_inv SP_bw_ex SP_bw_echo SP_bw_inv SP_coil_dip_voltage SP_spec_volume SP_rel_spec_off_center SP_patient_power	5.79 26.95 0.00 1041.00 1250.00 0.00 -> -> -> 0.50	-2100000000.00 -2100000000.00 -2100000000.00 -2100000000.00 -2100000000.00 -2100000000.00 -2100000000.00 -2100000000.00 -2100000000.00
Anatomy Scan list	SP_rf_duty_cycle SP_preamp_gain SP_receiver_att SP_u_ref_noise SP_v_ref_noise	0.01 0.00 19.59 0.00 0.00	-2100000000.00 - -2100000000.00 - -2100000000.00 - -2100000000.00 -
Auto survey PP Admin	i		
Prev. Scans	-		

click on double arrows until you see SP_receiver_att

Ingenia:

- While the sequence is running, on the Main Menu (Upper Left) choose System, and DataMonitoring
- This will bring up a window showing the preparation phases for the currently running sequence. You must review this page prior to the next sequence beginning, or use a different method to bring up the data.

	Monitorii	ng Display	Operato	r Consol	e – E:\Exp	ort\DataM	lonitorin	g\Bay9\p	_i_2011	1213_10:	2615.fram	e				
F	ix_csg	RX_TA	VSWR	TQ	RQ	ТМ	PU	POlin	PO	FO	PW		Pickup coil meas	ureme	nt	Opene Sh
						xmit 1: [iter ()], gain 0.(0562, ds 1.1	767					A	utoscale	Reset
	16	_												St	now Grid	Print
or ce	14	-												Sh	ow Dots	
Ē	12	_												Sign	als:	
nse															modulus	
espo	.0	_													Minimum	Maximum
	Ŭ													X:	0.0124	0.03736
			0.040		-	0.020		0.00 time [ms]	0		0.020		0.040	Y:	6.817	17.27
														A	itoscale	Reset
														St	10w Grid	Print
														Sh	IOW DOTS	
														Sign	als:	
															Minimum:	Maximum
														×	WITTELSEED	TVT0FAILTTSUT 6
														Y:		
Fr	ame: 📋	•) H	173	2			
															Help	Exit

Click on the PU tab at the top to find Transmit Gain

Click on the F0 tab at the top to find Center Frequency (you may have to use the right arrowhead to

Move the Frame: slider to 2/2 (large white arrow)

```
Note that in the top window you will see
```

```
xmit 1: (iter 1),gain 0.xxxx, ds x.xxxx (in yellow)
```

ds is the abbreviation for **d**rive **s**cale, and is the number for you to use as transmit gain on the ACR document (small white arrow)

Center Frequency (f0):

Click the FO button at the top (black arrow)

Move the Frame: slider to last iteration 1/1, 2/2, 6/6, etc. (large white arrow)

Note that in the bottom window you will see

res. freq. 63 870 xxx Hz ...etc. (in yellow) (128 xxx xxx Hz for 3.0T)

res. freq. is the resonant frequency for this sequence, and is the number for you to use as Center frequency on the ACR document (small white arrow)

1) Choose this tab to find CF & Sain

2) Scroll for CF & Gain on each coil

Toshiba's New Software

- Open info tab while in viewing mode:
- Then follow the next slide

SEQUENCE; PROTOCOL DESCRIPTOR

OPERATING MODE

RECEIVER COIL PRE-SCAN CAMPRATIONS TUNING VARAC TRANSMITTER & RECEIVER CENTER FREQUENCY (Hz)

PHASE OVERSAMPLING RATIO (RF) ACQUISITION MATRIX (f x Ø) RECONSTRUCTION MATRIX (f x ø) DISPLAY & STORAGE MATRIX (f x ø)

1st SLICE THICKNESS (mm) 1st SLICE INTERVAL (mm) 1st GAP (mm)

1st SLICE FIELD OF VIEW (cm) 1st SLICE RO RESOLUTION (mm)

CTPG

 5Π 10.0 5.0

se20; Site\acrT1Annual SE: Hz/pix=71.67, SS Spoil, RO Spo

Normal

Quad-Z Knee 1.41, 1.41 Power Amp (default)=50 (48) Coarse 25474000

> 1.000 1024 x 256 1024 x 256 256 x 256

18.0

n 7n