ESTABLISHING DRLs in PEDIATRIC CT

Keith Strauss, MSc, FAAPM, FACR Cincinnati Children's Hospital University of Cincinnati College of Medicine

Cincinnati Children's Cincinnati

INTRODUCTION

- CT Dose Indices
 - CTDI
 - CTDI₁₀₀, CTDI_w, CTDI_{vol}
 - Displayed vs Measured CTDI_{vol}
 - DLP
 - E Dose and its limitations
- SSDE
- Applications of SSDE in the Clinic

Clinical Application

- Adult hospitals perform 80% of pediatric CT exams.
- Pediatric radiation doses and image quality should be managed.
- Both tube voltage and mAs should be altered for pediatric imaging.
- Minimalist approach (change mAs only) is preferred over doing nothing.

CTDI = Integral under the *radiation dose profile* along the z-axis from a <u>single *axial* scan</u> of width nT.

Computed Tomography Dose Index (CTDI)

- Represents the average integrated absorbed dose along the z axis from a series of contiguous irradiations.
- CTDI₁₀₀ represents accumulated multiple scan dose at center of 100 mm scan.

CT SCANNER DOSE INDICES Calculation of CTDI Values Weighted CTDI: CTDI, Average CTDI across the FoV • $CTDI_{w} = 1/3 CTDI_{100,center} + 2/3 CTDI_{100,edge}$ • $CTDI_{w} = 17 + 66 = 83 mGy$ 100 for 32 cm CTDI phantom Ave Dose over x & y direction 50 100 100 100

Calculation of CTDI Values

- Volume CTDI: CTDI_{vol}
- **CTDI**_{vol} = **CTDI**_w / pitch
- Addresses dose when table motion occurs

- **Measurement of CT Radiation Dose**
- Plastic cylindrical phantoms: CTDI Phantoms
 - (PMMA)
 - 16 & 32 cm diameter
- Pencil chamber moved into provided holes to measure radiation dose
 - Center of phantom
 - Non measured holes plugged

CURRENT ADULT PATIENT MODEL

B. CTDI₁₀₀ measured with 100 mm pencil chamber in two standard phantoms

1. Sample 100 mm along the z-axis of patient

Measured CTDI_{vol}

- Measure CTDI_{vol} with identical scan parameters
 - kVp
 - mA
 - Rotation time
 - Bow Tie Filter
- Use phantom 10, 16, and 32 cm diameter

Displayed CTDI_{vol}

 Standardized method to estimate and compare the radiation output of two different CT scanners to same phantom.

does not represent . . . Patient dose!!

DISPLAYED CTDI SHORTCOMING

Same radiographic technique Displayed CTDI_{vol} based on 32 cm CTDI Phantom

18 mGy for both patients!

CLINICAL DILEMMA

- Displayed CTDI_{vol} on scanner is independent of patient size
 - 16 cm CTDI phantom: adult dose over while pediatric dose under estimated.
 - 32 cm CTDI phantom: adult and pediatric dose under estimated ~ 2.5 times!
 - Propagated by DICOM Structured Reports and CT scanner dose reports.

CLINICAL DILEMMA

CTDI Phantoms are not clinical models

CLINICAL DILEMMA

 Anthropomorphic Phantoms only approximate the human body

CTDI_{vol}:

20%	1.	Is measured with a point, small volume ionization
20%	2.	Represents the radiationdose to the patient.
20%	3.	Estimates and compares the radiation output of two
20%		different CT scanners to the same phantom.
20%	4. 5.	Can be determined with a single measurement. Is measured with a pencil ionization chamber with
		a length of 90 mm.

1. CTDI_{vol}:

- 1. Is measured with a point, small volume ionization chamber.
- **2.** Represents the radiation dose to the patient.
- 3. Estimates and compares the radiation output of two different CT scanners to the same phantom.
- 4. Can be measured with a single measurement.
- 5. Is measured with a pencil ionization chamber with a length of 90 mm
- Ref: "The Measurement, Reporting, and Management of Radiation Dose in CT", AAPM Report No. 96 (2008), p. 10.

Displayed Dose Length Product (DLP)

- DLP (mGycm) = CTDI_{vol} * Scan Length
 - Scan length is the length of phantom irradiated.
 - 'Represents' energy transferred.
- DLP is not a patient dose index because $CTDI_{vol}$ does not represent patient dose.

Effective Dose (E)

 Whole body uniform radiation dose that reflects the same risk to the patient as the larger radiation dose delivered to a fraction of the patient's body during a CT scan.

E(mSv) = k * DLP

Units of k: mSv / mGy-cm

- k values depend on:
 - Patient size
 - Body region
 - CTDI phantom assumed by vendor (16 or 32)

- 'SSDELP' = SSDE * Scan Length
- **Better** estimate of energy transferred.

Caution:

 SSDE can NOT be substituted in place of CTDI_{vol} when using kfactors to estimate Effective Doses from CT exam.

- Can Effective Dose be used to estimate:
 - An individual patient's radiation dose?
 - Organ doses?

 ABSOLUTELY NOT, despite the fact that one can find numerous published papers that make this error!!

 Effective Dose was originally defined to address radiation protection concerns of occupationally exposed workers.

• Effective dose can be used to facilitate a comparison of biological effects between diagnostic exams of different types.

Effective Dose Recommended Reading

- ICRP 103 Executive Summary
- AD Nixon, "New ICRP recommendations", J Radiol Prot 2008.
- CJ Martin, "Effective dose: How should it be applied to medical exposures?", BJR 2007
- "Rational approach to the clinical use of effective dose estimates", AJR 2011.

Christner JA, Sturchio G, McCollough CH, et al. Use of Effective Dose in Medical Imaging. Mayo Clinic Rochester, MN

Effective Dose:

		concerns of medically exposed patients.
	5.	Is defined to address radiation protection
20%	4.	Can be used to estimate organ doses.
20%	3.	Can be used to estimate an individual patient's
20%		times the appropriate k-factor instead of CTDI _{vol} -
20%	2.	Accuracy is improved when SSDE is multiplied
20%	1.	Compares biological effects between diagnostic exams of different types.

10

Effective Dose:

- 1. Compares biological effects between diagnostic exams of different types.
- 2. Accuracy is improved when SSDE is multiplied times the appropriate k-factor instead of CTDI_{vol}.
- 3. Can be used to estimate an individual patient's radiation dose.
- 4. Can be used to estimate organ doses.
- 5. Is defined to address radiation protection concerns of medically exposed patients.

Ref: "The Measurement, Reporting, and Management of Radiation Dose in CT", AAPM Report No. 96 (2008), p. 11.

AAPM Report No. 204

Size Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations

Report of AAPM Task Group 204, in collaboration with the International Commission on Radiological Units and Measurements (ICRU) and the Image Gently campaign of the Alliance for Radiation Safety in Pediatric Imaging.

Clinical Applications of SSDE So what is SSDE?:

- Estimates the peak soft tissue dose of the patient at the center of the scan length.
 - Adjusts for patient size and varying attenuation from overlying tissue thickness.

100

50

100

100

- Uses average scan radiation output: CTDI_{vol}
- Useful first approximation of organ dose?

Adapted from McCollough

Data from four independent investigators studying patient size correction factors.

- Physical measurements on phantoms
- Monte Carlo computer modeling

A Anthropomorphic Phantoms (McCollough Laboratory "Mc")

B. Cylindrical PMMA phantoms (Toth / Strauss Collaboration "T-S")

C. Monte Carlo Voxelized Phantoms (McNitt-Gray Laboratory "MG")

D. Monte Carlo Mathematical Cylinders (Boone Laboratory "Z-B")

32 cm 120 kV

Adapted from TG 204

Patient trunk dose > CTDI_{vol} by 2.5 x for smallest patients

y = 3.7044e^{-0.0367x} R² = 0.9429

16 cm 120 kVp

Adapted from TG 204

Patient head dose ≥ CTDI_{vol} for smallest patients by only 20%

y = 1.8748e^{-0.0387x} R² = 0.9673

What about scans performed at 80, 100, or 140 kV?

- 5% difference overall
 3% difference
 - between 1 yr old (15 cm) & adult (32cm)

What is an effective diameter?

- Circle with area of patient's cross section
- Effective diameter can be estimated if the patient's AP or lateral dimension is known.

AGE vs PATENT SIZE

Same age patients vary dramatically in size.

- Abdomens of:
 - Largest 3 year olds and
 - Smallest adults are the same size.
- Patient cross section size, not age, should be used.

What if I am doing retrospective dose analysis and I only know age of patient?

• Corrections based on patient size are more accurate.

Adapted from TG 204

Effective Diameter as a function of age per ICRU 74
TG 204 Determining patient size

 Measure Lateral dimension with mechanical calipers.

- Measure Lateral or AP dimension \bullet from AP or Lateral projection scan. Magnification Error
- **Measure AP or LAT dimen-** \bullet sion from axial scan view.

AP or PA Projection Scan Adapted from TG204

TG 204

SSDE Calculations

- Failure to identify correct CTDI phantom, 16 or 32 cm: systematic error of up to 100%.
- No standard exists: depends on:
 - Selected protocol: adult or pediatric
 - Selected scan field of view
 - Year of manufacture
 - Software rev
- Make no assumptions: contact manufacturer

TG 204

SSDE Accuracy

- •20%
- Product is an estimate of patient dose
- Significant digits?
 - SSDE > 5 mGy: integers only, 7 or 23 mGy
 - SSDE < 5 mGy: one decimal point, 2.7 or 4.5 mGy

SAMPLE CALCULATION: POST SCAN

- Determine size of patient
 - AP = 9.9 cm; LAT = 12.3 cm
 - AP + LAT = 22.2 cm
- 32 cm CTDI phantom assumed
- Displayed CTDI_{vol} = 5.4 mGy
- 5.4 mGy x 2.5 = 13 mGy SSDE

Correction Lat + AP Effective Dia (cm) Factor Dim (cm) 77 2.79 16 17 8.2 2.74 18 8.7 2 69 19 9.2 2.64 20 2.59 9.7 2.55 10.221 22 10.7 2.50 23 11 2 2.4024 11.7 2.41 25 122 2.37 12.7 2 32 26 27 13.2 2.28 28 137 2.24 29 14.2 2.20 Adapted from TG 204 30 14.7 2.16 31 15.2 2 12 32 15.7 2.08 33 16.2 2.05 16.7 34 2.01 35 17.2 1.97 36 17.6 1.94 37 18.1 1.90 38 18.6 1.87 39 19.1 1.83 40 196 1.80

SAMPLE CALCULATION: POST SCAN

- Determine size of patient
 - AP = 9.9 cm; LAT = 12.3 cm
 - AP + LAT = 22.2 cm
- 32 cm CTDI phantom assumed
- Displayed CTDI_{vol} = 5.4 mGy
- 5.4 mGy x 2.5 = 13 mGy SSDE

Adapted from TG 204

Lat + AP	Effective	Correction
Dim (cm)	Dia (cm)	Factor
10	7.7	2.79
17	8.2	2.74
18	6.7	2.69
19	9.2	2.64
20	9.7	2.59
21	10.2	2.55
22	10.7	2.50
23	11.2	2.46
24	11.7	2.41
25	12.2	2.37
26	12.7	2.32
27	13.2	2.28
28	13.7	2.24
29	14.2	2.20
30	14.7	2.16
31	15.2	2.12
32	15.7	2.08
33	16.2	2.05
34	16.7	2.01
35	17.2	1.97
36	17.6	1.94
37	18.1	1.90
38	18.6	1.87
39	19.1	1.83
40	19.6	1.80

SAMPLE CALCULATION: POST SCAN

- Determine size of patient
 - AP = 9.9 cm; LAT = 12.3 cm
 - AP + LAT = 22.2 cm
- 32 cm CTDI phantom assumed
- Displayed CTDI_{vol} = 5.4 mGy
- 5.4 mGy x 2.5 = 13 mGy SSDE

Lat + AP Effective Correction Factor Dim (cm) Dia (cm) 7.7 2.79 168.2 2.74 17 18 8.7 2.69 19 9.2 2.64 20 9.7 2.59 2.55 10.221 22 2.50 10711 2 23 2.46 24 11.7 2.41 25 122 2.37 12.7 26 2.32 27 13.2 2.28 28 13.7 2.24 29 14.2 2.20 Adapted from TG 204 30 147 2.16 31 15.2 2.12 32 15.7 2.08 33 16.2 2.05 34 16.7 2.01 35 17.2 1.97 36 17.6 1.94 37 18.1 1.90 38 18.6 1.87 39 19.1 1.83 40 196 1.80

SSDE:

20%	1.	Calculation has an estimated error of 10%.	
20%	2.	Accounts for both the radiation output of the scanner and patient size.	
20%	3.	Cannot be estimated until after the CT	
20%	4.	examination is completed. Is more accurate if patient size is estimated	
20%		based on the patient's age.	
	5.	Should not be used for CT examinations of the thorax.	9

SSDE:

- **1. Calculation has an estimated error of 10%.**
- 2. Accounts for both the radiation output of the scanner and patient size.
- 3. Cannot be estimated until after the CT examination is completed.
- 4. Is more accurate if patient size is estimated based on the patient's age.
- 5. Should not be used for CT examinations of the thorax.

Ref: "Size Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations", AAPM Report No. 204 (2011), p. 2.

Clinical Application

- Ideally, unique scan parameters should be established for each individual patient accounting for:
 - Patient size
 - Type of CT examination
 - Design of actual CT scanner
- This can be done in academic centers with diligent effort.

The Challenge

 Is this a practical solution for a community hospital that performs an occasional pediatric CT scan?

• Yet, majority of pediatric CT imaging in the US OCCURS in non-dedicated pediatric hospitals

A Solution: Patient Specific Technique on any CT Scanner

- Establish Diagnostic Reference Levels (DRL) for an examination for a given size patient
- Compare SSDE after the projection scan to department's DRL
- Adjust the clinical technique to match the desired DRL
 - Manual mode
 - Automated tube current mode
- Enlist the help of your qualified medical physicist (QMP)

- Adult Patient for Scanner #1
 - Use your measured dose data
 - Measured CTDI_{vol} data
 - Head
 - Body
 - Associated technique factors which created measured CTDI_{vol}

- Adult Patient for Scanner #1
 - Do your measured CTDI_{vol} results agree with published (national DRLs)?
 - ACR Accreditation submitted values without iterative reconstruction
 - Routine head $CTDI_{vol16} < 75 mGy$
 - Routine body $CTDI_{vol32}$ < 25 mGy
 - Discuss with your site's QMP

- Adult Patient for Scanner #1
 - \cdot Scale the mAs value if necessary to adjust CTDI_{vol} to desired level.
 - Calculate SSDE for routine abdomen
 - (28 & 38 cm AP & LAT dimensions)
 - DRL for Scanner #1

- Adult Patient DRL, Scanners #1, #2, #3, etc.
 - Scanner #1 (28 x 38 cm adult abdomen):
 - 120 kV, 250 mAs, pitch = 1, 25 mGy CTDI_{vol}
 - Site elects to reduce dose 20%
 - 120 kV, 200 mAs, pitch = 1, 20 mGy $CTDI_{vol}$
 - 120 kV, 250 mAs, pitch = 1.2, 20 mGy CTDI_{vol}
 - 20 mGy * 1.14 = 23 mGy SSDE

- Adult Patient DRL for Scanners #2, #3, etc.
 - Goal: similar image quality on all of site's CT scanners
 - First step: match the patient's radiation dose to the on all site's scanners.
 - Similar image quality is not guaranteed.
 - Evaluate image quality any time patient doses are altered
 - Cooperative task between radiologists, technologists, and QMP

- Adult Patient DRL, Scanners #1, #2, #3, etc.
 - 'Same' adult DRL for each scanner
 - SSDEs are equal
 - CTDI_{vol} values are equal
 - Unique technique for each scanner
 - mAs alone cannot be used to compare patient dose between two CT scanners

- Adult Patient DRL, Scanners #1, #2, #3, etc.
 - Scanner #1 (28 x 38 cm adult abdomen):
 - 120 kV, 200 mAs, pitch = 1, 20 mGy $CTDI_{vol}$
 - Scanner #2 (28 x 38 cm adult abdomen):
 - 120 kV, 250 mAs, pitch = 1, 13 mGy CTDI_{vol}
 - 120 kV, 385 mAs, pitch = 1, 20 mGy $CTDI_{vol}$
 - 120 kV, 250 mAs, pitch = 0.65, 20 mGy CTDI_{vol}
 - 23 mGy SSDE for both scanners

• Select Pediatric Patient DRL (without iterative reconstruction)

Abdomen/	Abdomen/	Abdomen/	kVp	mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE					
Pelvis:	Pelvis:	Pelvis:	120	200	1	1.0	1.0	23			Scanner #*	1: 23 mGy /	Adult SSDE
					Limited	Moderate	Aggressive	Limited	Moderate	Aggres- sive	Limited NB = Adult	Moderate NB = 0.75 * Adult	Aggressive NB = 0.5 *
AP	LAT	Effective			mAs	mAs	mAs	mAs	mAs	mAs	SSDE	SSDE	Adult SSDE
Thickness	Thickness	Diameter	Mass		Reduction	Reduction	Reduction	SSDE	SSDE	SSDE	Estimated	Estimated	Estimated
(cm)	(cm)	(cm)	(kg)	Age	Factor	Factor	Factor	(mGy)	(mGy)	(mGy)	mAs	mAs	mAs
10	14	11.8	4	newborn	0.52	0.39	0.25	23	17	11	104	77	50
and the second se	1	11.0	-										
11	16	13.3	10	1 yr	0.55	0.42	0.29	23	18	12	110	84	59
11 14	16 20	13.3 16.7	10 18	1 yr 5 yr	0.55	0.42	0.29	23 23	18 19	12 15	110 123	84 100	59 78
11 14 16	16 20 25	13.3 16.7 20.0	10 18 33	1 yr 5 yr 10 yr	0.55 0.62 0.70	0.42 0.50 0.62	0.29 0.39 0.53	23 23 23	18 19 20	12 15 18	110 123 140	84 100 123	59 78 106
11 14 16 19	16 20 25 29	13.3 16.7 20.0 23.5	10 18 33 54	1 yr 5 yr 10 yr 15 yr	0.55 0.62 0.70 0.80	0.42 0.50 0.62 0.74	0.29 0.39 0.53 0.68	23 23 23 23	18 19 20 21	12 15 18 20	110 123 140 160	84 100 123 148	59 78 106 137
11 14 16 19 22	16 20 25 29 32	13.3 16.7 20.0 23.5 26.5	10 18 33 54 65	1 yr 5 yr 10 yr 15 yr 20 yr	0.55 0.62 0.70 0.80 0.89	0.42 0.50 0.62 0.74 0.86	0.29 0.39 0.53 0.68 0.83	23 23 23 23 23 23	18 19 20 21 22	12 15 18 20 22	110 123 140 160 179	84 100 123 148 172	59 78 106 137 165
11 14 16 19 22 25	16 20 25 29 32 35	13.3 16.7 20.0 23.5 26.5 29.6	10 18 33 54 65 75	1 yr 5 yr 10 yr 15 yr 20 yr md adult	0.55 0.62 0.70 0.80 0.89 1.00	0.42 0.50 0.62 0.74 0.86 1.00	0.29 0.39 0.53 0.68 0.83 1.00	23 23 23 23 23 23 23 23	18 19 20 21 22 23	12 15 18 20 22 23	110 123 140 160 179 200	84 100 123 148 172 200	59 78 106 137 165 200
11 14 16 19 22 25 31	16 20 25 29 32 35 41	13.3 16.7 20.0 23.5 26.5 29.6 35.7	10 18 33 54 65 75 110	1 yr 5 yr 10 yr 15 yr 20 yr md adult Ig adult	0.55 0.62 0.70 0.80 0.89 1.00 1.25	0.42 0.50 0.62 0.74 0.86 1.00 1.31	0.29 0.39 0.53 0.68 0.83 1.00 1.43	23 23 23 23 23 23 23 23 23	18 19 20 21 22 23 25	12 15 18 20 22 23 27	110 123 140 160 179 200 250	84 100 123 148 172 200 262	59 78 106 137 165 200 287

- AP & LAT thicknesses are average values from study of 360 random patients
 - Kleinman PL et al. AJR June 2010, pp. 1611 19.

Abdomen/	Abdomen/	Abdomen/	kVp	mA
Pelvis:	Pelvis:	Pelvis:	120	200
AP Thickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age
10	14	11.8	4	newhorn
				nembolin
11	16	13.3	10	1 yr
11 14	16 20	13.3 16.7	10 18	1 yr 5 yr
11 14 16	16 20 25	13.3 16.7 20.0	10 18 33	1 yr 5 yr 10 yr
11 14 16 19	16 20 25 29	13.3 16.7 20.0 23.5	10 18 33 54	1 yr 5 yr 10 yr 15 yr
11 14 16 19 22	16 20 25 29 32	13.3 16.7 20.0 23.5 26.5	10 18 33 54 65	1 yr 5 yr 10 yr 15 yr 20 yr
11 14 16 19 22 25	16 20 25 29 32 35	13.3 16.7 20.0 23.5 26.5 29.6	10 18 33 54 65 75	1 yr 5 yr 10 yr 15 yr 20 yr md adult

AGE vs PATENT SIZE

Same age patients vary dramatically in size.

- Abdomens of:
 - Largest 3 year olds and smallest adults are the same size. Age- and Gender-Based Abdomen Size
- Patient cross section size, not age, should be used.

- AP & LAT thicknesses are average values from study of 360 random patients
 - Kleinman PL et al. AJR June 2010, pp. 1611 19.
- Effective Diameter = (AP Thk <u>* LAT Thk</u>)^{0.5}
 - Boone JM et al. TG204, AAPM website
- Average mass of boys & girls
 - National Center for Health Statistics 2000

Abdomen/	Abdomen/	Abdomen/	kVp	mA
Pelvis:	Pelvis:	Pelvis:	120	200
AP Thickness	LAT Thickness	Effective Diameter	Mass	
(cm)	(cm)	(cm)	(kg)	Age
10	14	11.8	4	newborn
11	16	13.3	10	1 yr
14	20	16.7	18	5 yr
16	25	20.0	33	10 yr
19	29	23.5	54	15 yr
22	32	26.5	65	20 yr
25	35	29.6	75	md adult
31	41	35.7	110	lg adult

Establish Department DRLs Select Pediatric Patient DRL (without iterative reconstruction)

- A. Use adult techniques
 - Newborn (10 x 14 cm) dose = 2.4 * adult dose
 - Common practice prior to 2001
- **B. Limited reduced pediatric techniques**
 - Newborn SSDE = adult SSDE
 - Basis of CT protocols on Image Gently Website posted in 2008

	Limited mAs	Moderate mAs	Aggressive mAs		
	Reduction	Reduction	Reduction		
Age	Factor	Factor	Factor		
newborn	0.52	0.39	0.25		
1 yr	0.55	0.42	0.29		
5 yr	0.62	0.50	0.39		
10 yr	0.70	0.62	0.53		
15 yr	0.80	0.74	0.68		
20 yr	0.89	0.86	0.83		
md adult	1.00	1.00	1.00		
lg adult	1.25	1.31	1.43		

• Select Pediatric Patient DRL (without iterative reconstruction)

D. Aggressive pediatric techniques

- Newborn SSDE = 0.5 * adult <u>SSDE</u>
- Results of QuIRCC published
 research

	<i>Limited</i> mAs	Moderate mAs	Aggressive mAs
	Reduction	Reduction	Reduction
Age	Factor	Factor	Factor
newborn	0.52	0.39	0.25
1 yr	0.55	0.42	0.29
5 yr	0.62	0.50	0.39
10 yr	0.70	0.62	0.53
15 yr	0.80	0.74	0.68
20 yr	0.89	0.86	0.83
md adult	1.00	1.00	1.00
lg adult	1.25	1.31	1.43

- Select Pediatric Patient DRL (without iterative reconstruction)
 - **C. Moderate pediatric techniques**
 - Newborn SSDE = 0.75 * adult SSDE
 - **D.** Aggressive pediatric techniques
 - Newborn SSDE = 0.5 adult SSDE
 - Results of QuIRCC published
 research

	Limited mAs	Moderate mAs	Aggressive mAs
	Reduction	Reduction	Reduction
Age	Factor	Factor	Factor
newborn	0.52	0.39	0.25
1 yr	0.55	0.42	0.29
5 yr	0.62	0.50	0.39
10 yr	0.70	0.62	0.53
15 yr	0.80	0.74	0.68
20 yr	0.89	0.86	0.83
md adult	1.00	1.00	1.00
lg adult	1.25	1.31	1.43

D. QuIRCC published research?

- Six pediatric hospitals submitted CT patient CTDI_{vol} dose data from late 2009; prior to iterative reconstruction reductions
- Image quality was evaluated
- SSDE/SSDE_{adult} = 0.14 + 0.025*LAT size

= 0.14 + 0.025*14 = 0.49

Goske MJ, et al. Radiology (2013) 268(1), 208-18.

 NB dose is half of adult dose in Aggressive model

Pediatric Patient DRL (without iterative reconstruction) SSDE

Abdomen/ Pelvis:	Abdomen/ Pelvis:	Abdomen/ Pelvis:	kVp 120	mA 200	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam 1.0	Adult SSDE		
AP Thickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age	<i>Limited</i> mAs Reduction Factor	<i>Moderate</i> mAs Reduction Factor	<i>Aggressive</i> mAs Reduction Factor	<i>Limited</i> mAs SSDE (mGy)	<i>Moderate</i> mAs SSDE (mGy)	Aggres- sive mAs SSDE (mGy)
10	14	11.8	4	newborn	0.52	0.39	0.25	23	17	11
11	16	13.3	10	1 yr	0.55	0.42	0.29	23	18	12
14	20	16.7	18	5 yr	0.62	0.50	0.39	23	19	15
16	25	20.0	33	10 yr	0.70	0.62	0.53	23	20	18
19	29	23.5	54	15 yr	0.80	0.74	0.68	23	21	20
22	32	26.5	65	20 yr	0.89	0.86	0.83	23	22	22
25	35	29.6	75	md adult	1.00	1.00	1.00	23	23	23
31	41	35.7	110	lg adult	1.25	1.31	1.43	23	25	27
	1	1			1	1	1	1	1	

Pediatric <u>Abdominal</u> DRL (without iterative reconstruction) Required mAs

mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE								
200	1	1.0	1.0	23			Scanner #	1: 23 mGy	Adult SSDE	Scanner #2	2: 23 mGy	Adult SSDE
						Aggres-	NB =	NB = 0.75	Aggressive	NB =	NB = 0.75	Aggressive
	Limited	Moderate	Aggressive	Limited	Moderate	sive	Adult	* Adult	NB = 0.5 *	Adult	* Adult	NB = 0.5 *
	mAs	mAs	mAs	mAs	mAs	mAs	SSDE	SSDE	Adult SSDE	SSDE	SSDE	Adult SSDE
400	Factor	Factor	Factor	SSDE (mGv)	SSDE (mGu)	SSDE (mGv)	Estimated	Estimated	Estimated	Estimated	Estimated	Estimated
Age	Factor	Factor	Factor	(mGy)	(mGy)	(mGy)	mas	mas	mas	mAs	mAs	mAs
newborn	0.52	0.39	0.25	23	17	11	L 104	77	50	201	149	97
1 yr	0.55	0.42	0.29	23	18	12	110	84	59	212	162	113
5 yr	0.62	0.50	0.39	23	19	15	123	100	78	237	193	149
10 yr	0.70	0.62	0.53	23	20	18	140	123	106	270	237	204
15 yr	0.80	0.74	0.68	23	21	20	160	148	137	308	286	263
20 yr	0.89	0.86	0.83	23	22	22	179	172	165	344	331	318
md adult	1.00	1.00	1.00	23	23	23	200	200	200	385	385	385
ind date				00	05	07	250	262	207	101		
lg adult	1.25	1.31	1.43	23	25	27	200	202	201	481	504	552

Reduction of mAs for abdominal CT for a newborn patient:

Reduction of mAs for abdominal CT for a newborn patient:

- 1. Newborn (NB) dose = adult dose (AD) if adult mAs is unchanged.
- 2. NB dose = half of AD if adult mAs cut in half.
- **3. NB dose = AD if adult mAs divided by 3.**
- 4. NB dose = half of AD if adult mAs divided by 4
- **5. NB dose = half of AD does not provide**

clinically useful images.

Goske MJ, et al. Radiology 2013 Jul;268(1):208-18. Strauss KJ. Pediatr Radiol 2014 Oct;44 Suppl 3:479-488.

- Pediatric <u>Chest</u> DRL (without iterative reconstruction) Required mAs
 - Scanner 1 (28 x 38 cm adult abdomen):

 \bullet

- 120 kV, 200 mAs, pitch = 1, 20 mGy $CTDI_{vol}$
- 20 mGy * 1.14 = 23 mGy SSDE
- 120 kV, 160 mAs, pitch = 1, 16 mGy $CTDI_{vol}$
 - 16 mGy * 1.14 = 18 mGy SSDE

ļ	kVp	mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE
	fill in	fill in	fill in	fill in	fill in	fill in

- Pediatric <u>Chest</u> DRL (without iterative reconstruction) Required mAs
 - BE CAREFUL:
 - Data has not been published to date for the chest where pediatric radiologists have evaluated image quality and dose.
 - Consider using Moderate
 as opposed to Aggressive
 mAs reduction until more
 data is published

	Limited mAs	Moderate mAs	Aggressive mAs
	Reduction	Reduction	Reduction
Age	Factor	Factor	Factor
newborn	0.52	0.39	0.25
1 yr	0.55	0.42	0.29
5 yr	0.62	0.50	0.39
10 yr	0.70	0.62	0.53
15 yr	0.80	0.74	0.68
20 yr	0.89	0.86	0.83
md adult	1.00	1.00	1.00
lg adult	1.25	1.31	1.43

- Pediatric Head Exams w/o iterative recon
 - Have validated adult head doses by ACR.
 - Limited: ped doses = adult dose (75 mGy max)

Head Iaseline:	Head Baseline:	Head Baseline:	kVp 120	m A 370	Time (sec) 1.00	During Measured CTDIvol	During Clinical Exam 1.0	Scan #1
AP hickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age	<i>Limited</i> mAs Reduction Factor	Moderate mAs Reduction Factor	Limited Estimated mAs	Mode Estima mA
14	12	13	4	newborn	0.74	0.38	274	141
16	13	14.5	10	1 yr	0.80	0.47	296	174
17	14	15.5	13	2 yr	0.86	0.62	318	229
19	15	17	21	6 yr	0.93	0.79	344	292

- Pediatric Head Exams w/o iterative recon
 - Have validated adult head doses by ACR.
 - Limited: ped doses = adult dose (75 mGy max)
 - Moderate: 16 vs 20 cm AP: 35 mGy vs 75 mGy
 - Maximum ACR reference values

Head	Head	Head	kVp	mA	Time (sec)	During Measured CTDIvol	During Clinical Exam	Scanı #1
laseline:	Baseline:	Baseline:	120	370	1.00	1.0	1.0	
AP hickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age	<i>Limited</i> mAs Reduction Factor	Moderate mAs Reduction Factor	Limited Estimated mAs	Mode Estima mA
14	12	13	4	newborn	0.74	0.38	274	141
16	13	14.5	10	1 yr	0.80	0.47	296	174
16 17	13 14	14.5 15.5	10 13	1 yr 2 yr	0.80 0.86	0.47 0.62	296 318	174 229
16 17 19	13 14 15	14.5 15.5 17	10 13 21	1 yr 2 yr 6 yr	0.80 0.86 0.93	0.47 0.62 0.79	296 318 344	174 229 292

Managing Pediatric Head CT Doses:

10

Managing Pediatric Head CT Doses:

- **1. Calculate SSDE to estimate patient dose.**
- 2. Cut adult head mAs in half, for 1 yr old technique to deliver ~ 35 mGy CTDI_{vol}.
- 3. Cut the adult head mAs in half, for 1 yr old technique to deliver ~ 75 mGy CTDI_{vol}.
- 4.35 mGy CTDI_{vol} is recommended by Image Gently for 1 yr old patient head.
- 5.35 mGy CTDI_{vol} is recommended by ACR for a newborn head.

Strauss KJ. Pediatr Radiol 2014 Oct;44 Suppl 3:479-488.
- Iterative Reconstruction Required mAs
 - Scans with iterative reconstruction should deliver significantly less dose than DRL values of ACR
 - Degree of iterative reconstruction
 - Vendor recommendation?
 - Site's radiologists and QMP should evaluate degree of iterative reconstruction that provides desired image quality.

- Iterative Reconstruction Required mAs
 - Scanner 1 (28 x 38 cm adult abdomen):
 - Scale adult patient mAs to reflect the reduction in adult patient SSDE
 - Plug technique and SSDE values into table.
 - Consider moderate as opposed to aggressive mAs reduction until more data is published

kVp	mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE
fill in	fill in	fill in	fill in	fill in	fill in

- Tube Voltage < 120 kV: Required mAs?
 - Any size patient: Less voltage, same dose
 - Set size dependent mAs at 120 kV
 - Note displayed CTDI_{vol120}
 - Reduce voltage to desired value on scanner
 - Increase mAs until CTDI_{vol} = CTDI_{vol120}
 - Increased Contrast at ~ same dose

kVp	mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE
fill in	fill in	fill in	fill in	fill in	fill in

- Voltage < 120 kV: Required mAs?
 - 10 yr patient: Less voltage, same image quality
 - Set size dependent mAs at 120 kV
 - Note displayed CTDI_{vol120}
 - Measure increased contrast at kV_{ref} compared to 120 kV.
 - Place 'roi' over 1 cm disk
 & background region

Voltage < 120 kV: Required mAs?

- 10 yr patient: Less voltage, same image quality
 - Noise increase: CTDI_{vol120} vs CTDI_{vol80}
 - Assume contrast up 20% / Noise up 40%
 - Increase mAs at 80 kV until Noise increases only 20%
 - $CNR_{120kV} = CNR_{80kV}$
 - Same image quality; Reduced patient dose

			Pitch	Pitch	
			During	During	
			Measured	Clinical	Adult
kVp	mA	Time (sec)	CTDIvol	Exam	SSDE
fill in	fill in	fill in	fill in	fill in	fill in

Previous analysis: Reduced mAs @ 120 kV

Voltage < 120 kV: Required mAs?

- 120 vs 100, 90, 80, & 70 kV
- Affect on:
 - Contrast
 - Noise
 - Artifacts
 - Scanning speed: Motion Unsharpness

When reducing the high voltage to improve image quality and reduce radiation dose for pediatric patients, one can ignore the effect on:

- ^{20%} 1. Contrast.
- 20% **2.** Noise.
- 20% **3. Sharpness**
- 20% 4. Artifacts
- 20% **5. Scanning speed**

When reducing the high voltage to improve image quality and reduce radiation dose for pediatric patients, one can ignore the effect on:

1. Contrast.

- 2. Noise.
- **3. Sharpness.**
- 4. Artifacts.
- **5. Scanning Speed**

Ref: Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH. Radiographics 2011 May-Jun;31(3):835-48, p 835

Automatic Mode

- Adjust provided parameters to result in desired SSDE based on voltage choice
 - Image quality index is not constant for all sized patients
 - Radiologists demand greater CNR in images of smaller patients
 - **GE:** Noise Index
 - Maintain constant noise in all images
 - Doubling Noise index quarters dose and doubles noise in images

Automatic Mode

- Adjust provided parameters to result in desired SSDE based on voltage choice
 - Image quality index typically is not constant for all sized patients
 - Toshiba: Standard Deviation
 - Doubling Std Dev quarters dose and doubles noise in images
 - Siemens: Quality Reference Effective mAs for ~ 80 kg standard patient
 - Philips: Automatic Current Setting (ACS)

Scan Progression

- Complete projection Scan
- Setup voltage and mAs as previously determined to achieve department DRLs

or

- Calculate SSDE
- Compare calculated SSDE to reference SSDE
- Adjust mAs or kV as necessary

Conclusions

Due to variations in:

- Patient size,
- Type of CT examinations, and
- Design of actual CT scanners,
- Patient's CT dose should be appropriately
- Estimated and
- Managed during the examination, regardless of patient size!