

Pediatric CT Physics: A Radiologist's Perspective

- Background
- Objective
- Reducing CT Utilization
- Reducing CT Dose
- Monitor our Results
- Summary

Children are at Greater Risk than Adults Kids are up to 15 more vulnerable than adults

- Children are considerably more sensitive to radiation than adults
- Children also have a longer life expectancy than adults, resulting in a larger window of opportunity for expressing radiation
- Children receive a higher dose than necessary when adult CT settings are used for children

Radiation Dose Units

Energy deposited is expressed in units of Gray (Gy) 1 mGy = 100 mrads Biological risk is expressed in unit of Sieverts (Sv) 1 mSv = 100 mrem Note that for Diagnostic Radiation (X-ray) 1 rem = 1 rad

Average annual radiation effective dose (mSv)

	<u>UNSCEAR</u>		Princeton	Wa State	MEXT
	Average	Range	USA	USA	Japan
Natural	2.40	1.0-13.0	2.95	2.95	1.50

Take home point: You receive

~3 mSv (300mrad)

from natural background radiation

CT Dose Descriptors

• CTDI_{vol}

Specifies the average dose absorbed in the scanned volume of the phantom (or patient of the same size). It is reported in mGy (milligray).

DLP (Dose Length Product)

This is merely the CTDI_{vol} multiplied by the length of the actual scan, in centimeters. It is reported in *mGy cm*. If the scan length is identical, one can use this to compare doses.

Effective Dose

This describes the radiation risk for the entire human body, but can only be measured with whole body phantoms or calculated with very sophisticated software. It can be estimated using the DLP and conversion factors. It is reported in Sv or mSv (millisievert).

Calculation of Effective Dose Estimates: AAPM #96

 Table 3. Normalized effective dose per dose-length product (DLP) for adults (standard physique) and pediatric patients of various ages over various body regions. Conversion factor for adult head and neck and pediatric patients assume use of the head CT dose phantom (16 cm). All other conversion factors assume use of the 32-cm diameter CT body phantom^{78,79}

Region of Body	k (mSv mGy-1 cm-1)					
	0 year old	1 year old	5 year old	10 year old	Adult	
Head and neck	0.013	0.0085	0.0057	0.0042	0.0031	
Head	0.011	0.0067	0.0040	0.0032	0.0021	
Neck	0.017	0.012	0.011	0.0079	0.0059	
Chest	0.039	0.026	0.018	0.013	0.014	
Abdomen≈& pelvis	0.049	0.030	0.020	0.015	0.015	
Trunk	0.044	0.028	0.019	0.014	0.015	
	<i>E</i> (n	$nSv) \approx k \times DLF$			(Eqn. 12)	

Estimating Effective CT Head Dose (mSv) (20 year old)

Total mAs 4/18	Total DLP 83	86 mGycr	m				
	Scan	k∨	mAs / ref.	CTDIvol⁺ mGy	DLP mGycm		
Patient Position H-SP							
Topogram	1	120	36 mA	0.30 S	8		
Head	2	100	503 / 513	48.15 S	B28		
Effective Dose (mSv) = $k \times DLP$ = (0.0021 x 836) = 1.8 mSv							
			= (0.0 = 1.8	021 x 8 mSv	336)		

Risk from Pediatric CT

Estimated Risks of Radiation-Induced Fatal Cancer from Pediatric CT

David J. Brenner¹

RESULTS. The larger doses and increased lifetime radiation risks in children produce a sharp increase, relative to adults, in estimated risk from CT. Estimated lifetime cancer mortal-

RE: Brenner 2001 ... controversial article, ... criticism of Brenner's model used for risk estimate from high doses

Whether it's 1/1,000 or 1/5,000 is not the point. The point is there *is a risk.*

risks for children undergoing CT are not negligible may stimulate more active reduction of CT exposure settings in pediatric patients.

AJR February 2001

Update on Cancer Risk

BMJ 2013;346:12360 doi: 10.1136/bmj./2360 (Published 22 May 2013)

Page 1 of 18

Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians

Overall cancer incidence was 24% greater for exposed than for unexposed people, (95% confidence interval 1.20 to 1.29); P<0.001)

Observed a dose-response relation, and the incidence rate ratio increased by 0.16 (0.13 to 0.19) for each additional CT scan

BMJ May 2013

Pediatric CT Physics: A Radiologist's Perspective

- Background
- Objective
 - To implement a CT radiation dose program at a major US children's hospital
 - Track our results
- Reducing CT Utilization
- Reducing CT Dose
- Monitor our Results
- Summary

Pediatric CT Physics: A Radiologist's Perspective

- Background
- Objective
- Reducing CT Utilization
- Reducing CT Dose
- Monitor our Results
- Summary

1985

1980

NEJM Nov 2007 Brenner and Hall

Annually in the United States.

1990

Figure 2. Estimated Number of CT Scans Performed

The most recent estimate of 62 million CT scans in 2006 is from an IMV CT Market Summary Report.³

1995

Year

2000

2005

Education

- Educate residents/fellows on CT Dose
- Offer community CME to elevate awareness among ER physicians and pediatricians
- Present grand rounds at regional hospitals
- Attend pediatric subspecialty divisional meetings to elevate awareness
- Present status updates at General Medical Staff Meetings for the hospital

SLCH Outside Hospital Uploads June 2013 – March 2014

Entity		Tot Refere	al ences	Total Consults		
SLCH		5872			1566	
References	Totals		Consults		Totals	
Body CT	211		Body CT		263	
Neuro	2563		Neuro		497	
Plain Film	2366		Plain Film		761	
Total References	5872		Total Consu	lts	1566	

Audit: Compare our Practice to Published Guidelines

CT for pediatric, acute, minor head trauma: clinician conformity to published guidelines.

Linscott LL, Kessler MM, Kitchin DR, Quayle KS, Hildebolt CF, McKinstry RC, Don S.

<u>AJNR Am J Neuroradiol.</u> 2013 Jun-Jul;34(6):1252-6. doi: 10.3174/ajnr.A3366. Epub 2012 Dec 6.

CONCLUSIONS:

Clinician conformity to published guidelines for use of head CT in acute, minor head trauma (at SLCH) is better than suggested by a 2001 informal poll of pediatric radiologists.

IOIALE	xams		
SLCH Exams	91,000		
Total Exams	850,000	10.7% of Exams	
CT Ex	ams Number of Examinations	Percent	
Barnes-Jewish Hospital	44368	80.7%	
Barnes-Jewish West County Hospital	6557	11.9%	1 00/ · (0T
St. Louis Children's Hospital	2623	4.8%	4.8% of C Is
Barnes-Jewish South County	1109	2%	
Total	54993		

CT Head CTDI_{vol} Variation for St. Louis Regional Hospitals using Same Scanner

Worst Case Scenario

8 year old scanned at a regional community hospital

	Scan	ΚV	mAs / ref.	CTDIvol	DLP
Patient Position H-SP					
Topogram	1	120			
Head WO	2	120	420	58.40	1165

= k x DLP = 0.0057 x 1165 = 6.6 mSv!!!!

2 years, 2 months of background

SLCH Case Scenario 8 year old scanned with full dose technique

"at what percentage of BG radiation is pediatric CT dose considered reasonably achievable?"

&

"why not image quality is the indicator for image acceptability?"

6 months of background

Recent Advances

- Upgrade our scanners
- Let the scanner do the work!
- Make the low dose (Shunt) protocol the standard
- Reserve full dose for trauma and kids who can't get MRI (e.g., Cardiac ICU patients on ECMO)
- DICOM SR sent to a central dose monitoring database for improved tracking and reporting

Strategy #2: Upgrade Old Scanners

- Adaptive Shielding
- Automatic tube current modulation
- Patient specific tube voltage selection
- Iterative reconstruction
- Dual Energy

Ongoing Dose Reduction 19 yo with 14 CT Heads in 5 years

2011 100 kV, AEC Scan kV mAs / ref. CTD/vol* DLP mGy mGycm 2 100 445 / 513 43.64 S 778	43.64
Scan kV mAs / ref, CTDIvol* DLP mGy mGycm 2 100 363 / 484 35.11 S 614	35.11
Scan KV mAs / ref. CTDivol* DLP mGy mGycm 2015 Dual Energy 2A 80 204 / 300 2B Sn140 109 / 150 17.90 S .395	17.90

Total mAs 510	Total DLP 146	mGycm			
	Scan	K٧	mAs / ref.	CTDIvol* mGy	DLP mGycm
Patient Position I	H-SP				
Topogram Head	1 2	120 100	34 mA 91 / 150	0.25 S 8.86 S	6 140
Est. Dose	= 0.0032 x = <mark>0.47 n</mark>	x 146 nSv		X	

Dual Energy Contrast Enhanced CT

DE_HeadAngio

17A 80 17B Sn140 200 100

CTDIvol* DLP mGy mGycm

15.18 S 451

Dual Energy Bone Removal

DE CT: Metal Artifact Reduction by Monoenergetic Extrapolation

Pediatric CT Physics: A Radiologist's Perspective

- Background
- Objective
- Reducing CT Utilization
- Reducing CT Dose
- Monitor our Results
- Summary

Initial Experience with Enterprise Wide Dose Monitoring at BJC Healthcare

Robert McKinstry, MD, PhD, FACR James Duncan, MD, PhD Mandie Street, RT(R)(MR),CSSGB Bruce Hall, MD, PhD, MBA

Joint Commission Recommendations "Effective" July 2015

Areas addressed in the new and revised standards include:

· Minimum competency for radiology technologists, including registration and certification by July 1, 2015

Documentation of CT radiation dose in the 'patient's clinical record

 Collection of data on incidents where pre-identified radiation dose limits have been exceeded

BJC Healthcare Net Revenues of \$4 billion

- 1. Alton Memorial Hospital
- 2. *Barnes-Jewish Hospital
- 3. *Barnes-Jewish St. Peters Hospital
- 4. *Barnes-Jewish West County Hospital
- 5. Boone Hospital
- 6. Christian Hospital
- 7. Missouri Baptist Hospital
- 8. Missouri Baptist Sullivan Hospital
- 9. Northwest HealthCare
- 10. Parkland Health Center
- 11. *Progress West Hospital
- 12. *St. Louis Children's Hospital
- 13. The Rehabilitation Institute of St. Louis

*Covered by Mallinckrodt Institute of Radiology

Dose Monitoring Implementation

	Item	Target Date	Completion Date
	Funding Approved		May-2013
	BJH, SLCH, BJWC CT/ IR Implementation		Feb-2014
	Mapping Training with Mandie Street	April 4, 2014	Apr-2014
	Set Up West Server	April 7, 2014- April 21, 2014	Apr-2014
	CT Modality Set Up and Testing	April 21, 2014- May 5, 2014	Apr-2014
e e	CT Modality Mapping and Customer Training	May 5, 2014- May 19, 2014	May-2014
re	CT Final Testing and Site Training	May 19, 2014- June 6, 2014	May-2014
-	MBMC, MBS, SNE/W, BJSP, PW, Parkland, Alton, Boone	July 2014	May-2014
	IR Implementation West Server	Nov 2014	
	Academic Dose Integration	Dec 2014	
	West Server Dose Integration	June 2015	
	C-Arms/ Fluoro Units	Late 2015	

Dose Metric in Medical Record

- Our solution has the ability to send the dose metric to the RIS (Radiology Information System)

 Update: Sending to RIS but not yet populating the report
- Deployed at SLCH November 2012
- Deployed at BJH March 2013
- Deployed on the West Server in 2014
- Goal all of BJC will have dose metrics in the radiology report by July 2015

Current State

- Academic Server
 - All CT
 - All compatible IR Units
- West/Community Server
 All CT

DLP Head vs DLP Body

- All scanners use a
 - head (16cm) or
 - body (32cm) phantom to create a dose estimate

If the scanner used the head phantom to create the dose estimate then it would fall under the DLP head alerts – necks for example typically use the head phantom.

SLCH High Dose Analysis

Pediatric Head Alert Trigger-1500 DLP

SLCH Notifications and Investigation

	Ward: Physician:	EMER(Э 0							
	Operator:	AEH								
Alerts Alert E										
Alert Type	Total mAs 6827 Tot	al DLP 23	84 mGyc	m						
Date: 10/15		Scan	kV	mAs	/ ref.	CTDIvol*	DLP	TI	¢SL	(The second sec
						mGy	mGycm	s	mm	
Туре	Patient Position H-SP									Description
	Topogram	1	120	34	mA	0.28 S	7	2.6	0.6	xamination dose 🔺
	Head	2	100	349	/ 513	33.70 S	615	1.0	0.6	eference level BH Head]
	Topogram	3	100	39	mA	0.20 S	10	4.9	0.6	exceeded DLP
	Topogram	4	100	39	mA	0.20 S	10	5.3	0.6	lead Max
	PreMonitoring Contrast	5	120	20		2.69 S	3	0.28	10.0	mGy-cm]
	Monitoring	6	120	20		18.86 S	19	0.28	10.0	
	HeadAngio	13	120	> 269	/ 249	41.28 S	1549	0.28	0.6	
		<i>c</i> 1				1.4.4				

Anal	lveie	Tak	2
7 110	19313	Ia	

	Show	Parameter	Mean	Min	Max
	☑	mAs	200.4	87	285
	☑	Water-Equiv. Diam. (cm]	18.5		
		SSDE			
0		Effective Diam. (cm)			
8					

Benchmarking our System with California

Future State

All sites:

- West Interventional
- C-Arms
- Fluoro units (RF)
- Plain Film (CR/DR)
- Mammography

Ultimate Goal:

- All imaging equipment within each hospital (Cath Lab - etc.)
- Common Database for all of BJC

Why are children at greater cancer risk from CT scan exposure than adults?

- Children are more radiosensitive than adults because of ongoing cell division and proliferation
- Kids have longer to live with risk after exposure
- Cancer is actually relatively rare in children
- You can decrease kV and mAs and maintain image quality in smaller children
- CT utilization is greater in adults than kids

Ref: Mathews JD, et al., BMJ. 2013 May 21;346:f2360

For the estimated effective dose equation: E (mSv) = k x DLP

- k is dependent on age
- k is tabulated by body region
- E is an estimate, it is not accurate
- DLP is dependent on CTDI_{vol}
- E is an estimate for the patient, not the phantom

Ref: AAPM Report No. 96

Effective dose estimates are only valid for

Effective dose estimates are only valid for

Prospective radiological protection purposes

E can be of some value for

- Comparing doses from different diagnostic/therapeutic procedures
- For comparing the radiation risks for different technologies.

E should not be used for

- Retrospective dose assessments or
- Detailed estimation of a specific individual's risk. Absorbed dose to irradiated tissues is the more appropriate quantity.

Ref: AAPM Report No. 96

Why is SSDE important for pediatric patients?

The dose received by a patient from a CT scan is dependent on both patient size and scanner radiation output. CTDI_{vol} provides information regarding *only* the scanner output. It does not address **patient size**, and hence does not estimate patient dose (McCollough 2011). This is a concern, *because for smaller pediatric patients, interpreting the displayed CTDI_{vol} (or DLP) as patient dose—without recognizing the distinction between the two—could lead to underestimating patient dose levels by a factor of 2–3 if the 32 cm PMMA phantom was used for reference.*

Interpreting CTDI_{vol} (or DLP) as dose could ... lead to underestimating patient dose

Ref: AAPM Report No. 204

Thanks for your attention!

Questions? Comments?