Pediatric CT Physics:
A Radiologist’s Perspective

Robert C. McKinstry, MD, PhD, FACR
Radiologist-in-Chief
Professor of Radiology and Pediatrics

Dr. McKinstry’s Disclosures

• Siemens Healthcare:
 • Acting & Modeling Fees, Honoraria, Travel, Meals related to the PET/MR.
• Guerbet LLC:
 • Consulting Fee related to gadoterate meglumine IV MR contrast agent
• No disclosures related to the content of this lecture
Pediatric CT Physics:
A Radiologist’s Perspective

• Background
• Objective
• Reducing CT Utilization
• Reducing CT Dose
• Monitor our Results
• Summary

Children are at Greater Risk than Adults
Kids are up to 15 more vulnerable than adults

• Children are considerably more sensitive to radiation than adults

• Children also have a longer life expectancy than adults, resulting in a larger window of opportunity for expressing radiation

• Children receive a higher dose than necessary when adult CT settings are used for children
Radiation Dose Units

Energy deposited is expressed in units of Gray (Gy)
1 mGy = 100 mrad

Biological risk is expressed in unit of Sieverts (Sv)
1 mSv = 100 mrem

Note that for Diagnostic Radiation (X-ray)
1 rem = 1 rad

Average annual radiation effective dose (mSv)

<table>
<thead>
<tr>
<th>UNSCEAR</th>
<th>Princeton</th>
<th>Wa State</th>
<th>MEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>2.40</td>
<td>1.0-13.0</td>
<td>2.95</td>
</tr>
<tr>
<td>Natural</td>
<td>2.40</td>
<td>USA</td>
<td>USA</td>
</tr>
</tbody>
</table>

Take home point: You receive

~3 mSv (300 mrad)

from natural background radiation

CT Dose Descriptors

- **CTDI\textsubscript{vol}**
 Specifies the average dose absorbed in the scanned volume of the phantom (or patient of the same size). It is reported in mGy (milligray).

- **DLP (Dose Length Product)**
 This is merely the CTDI\textsubscript{vol} multiplied by the length of the actual scan, in centimeters. It is reported in mGy cm. If the scan length is identical, one can use this to compare doses.

- **Effective Dose**
 This describes the radiation risk for the entire human body, but can only be measured with whole body phantoms or calculated with very sophisticated software. It can be estimated using the DLP and conversion factors. It is reported in Sv or mSv (millisievert).
Calculation of Effective Dose Estimates: AAPM #96

Table 3. Normalized effective dose per dose-length product (DLP) for adults (standard physique) and pediatric patients of various ages over various body regions. Conversion factor for adult head and neck and pediatric patients assume use of the head CT dose phantom (16 cm). All other conversion factors assume use of the 32-cm diameter CT dose phantom*2, 29

<table>
<thead>
<tr>
<th>Region of Body</th>
<th>0 year old</th>
<th>1 year old</th>
<th>5 year old</th>
<th>10 year old</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and neck</td>
<td>0.013</td>
<td>0.0085</td>
<td>0.0067</td>
<td>0.0042</td>
<td>0.0031</td>
</tr>
<tr>
<td>Head</td>
<td>0.011</td>
<td>0.0067</td>
<td>0.0040</td>
<td>0.0032</td>
<td>0.0021</td>
</tr>
<tr>
<td>Neck</td>
<td>0.017</td>
<td>0.012</td>
<td>0.011</td>
<td>0.0079</td>
<td>0.0059</td>
</tr>
<tr>
<td>Chest</td>
<td>0.039</td>
<td>0.026</td>
<td>0.018</td>
<td>0.013</td>
<td>0.014</td>
</tr>
<tr>
<td>Abdomen & pelvis</td>
<td>0.049</td>
<td>0.030</td>
<td>0.020</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Trunk</td>
<td>0.044</td>
<td>0.038</td>
<td>0.019</td>
<td>0.014</td>
<td>0.015</td>
</tr>
</tbody>
</table>

\[E (\text{mSv}) = k \times DLP. \] (Eqn. 12)

Estimating Effective CT Head Dose (mSv) (20 year old)

<table>
<thead>
<tr>
<th>Total mAs</th>
<th>Total DLP 036 mGycm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
<td>kv</td>
</tr>
<tr>
<td>Topogram</td>
<td>1</td>
</tr>
<tr>
<td>Head</td>
<td>2</td>
</tr>
</tbody>
</table>

Effective Dose (mSv) = k \times DLP
= (0.0021 \times 836)
= 1.8 mSv

7 months of background
RE: Brenner 2001 ... controversial article, ... criticism of Brenner’s model used for risk estimate from high doses

Whether it’s 1/1,000 or 1/5,000 is not the point. The point is there is a risk.

Brenner 2001

Overall cancer incidence was 24% greater for exposed than for unexposed people, (95% confidence interval 1.20 to 1.29); P<0.001

Observed a dose-response relation, and the incidence rate ratio increased by 0.16 (0.13 to 0.19) for each additional CT scan

BMJ May 2013
Pediatric CT Physics: A Radiologist’s Perspective

- Background
- Objective
 - To implement a CT radiation dose program at a major US children’s hospital
 - Track our results
- Reducing CT Utilization
- Reducing CT Dose
- Monitor our Results
- Summary
CT Utilization is on the Rise in the US

Reducing CT Utilization at SLCH

- **EDUCATION:**
 - Get the word out about the risks and benefits of CT

- **ALTERNATIVES:**
 - We used "Lean" methodology to streamline access to MRI
 - We expanded the access to ultrasound
 - We offered interpretation of outside hospital CTs

- **AUDIT:**
 - Track exams, dose and adherence to protocol
 - We compared our practice to published guidelines
Education

- Educate residents/fellows on CT Dose
- Offer community CME to elevate awareness among ER physicians and pediatricians
- Present grand rounds at regional hospitals
- Attend pediatric subspecialty divisional meetings to elevate awareness
- Present status updates at General Medical Staff Meetings for the hospital

Reducing CT Utilization at SLCH

Bending the Curve
SLCH CT Volume
Achieving a 15 year low

Where have all the scans gone?
Alternatives: MR & US fill the gap
Alternatives: Improve On-Call Ultrasound Availability

Alternatives: Offer Official Consultation for Outside Hospital CT Exams
SLCH Outside Hospital Uploads
June 2013 – March 2014

<table>
<thead>
<tr>
<th>Entity</th>
<th>Total References</th>
<th>Total Consults</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLCH</td>
<td>5872</td>
<td>1566</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body CT</td>
<td>211</td>
</tr>
<tr>
<td>Neuro</td>
<td>2563</td>
</tr>
<tr>
<td>Plain Film</td>
<td>2366</td>
</tr>
<tr>
<td>Total References</td>
<td>5872</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consults</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body CT</td>
<td>263</td>
</tr>
<tr>
<td>Neuro</td>
<td>497</td>
</tr>
<tr>
<td>Plain Film</td>
<td>761</td>
</tr>
<tr>
<td>Total Consults</td>
<td>1566</td>
</tr>
</tbody>
</table>

Audit: Compare our Practice to Published Guidelines

CT for pediatric, acute, minor head trauma: clinician conformity to published guidelines.
Linscott LL, Kessler MM, Kitchin DR, Quayle KS, Hildebolt CF, McKinstry RC, Don S.

CONCLUSIONS:
Clinician conformity to published guidelines for use of head CT in acute, minor head trauma (at SLCH) is better than suggested by a 2001 informal poll of pediatric radiologists.
SLCH CT Utilization

<table>
<thead>
<tr>
<th>SLCH Exams</th>
<th>91,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Exams</td>
<td>850,000</td>
</tr>
</tbody>
</table>

10.7% of Exams

CT Exams

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Number of Examinations</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnes-Jewish Hospital</td>
<td>44368</td>
<td>82.7%</td>
</tr>
<tr>
<td>Barnes-Jewish West County Hospital</td>
<td>5557</td>
<td>11.9%</td>
</tr>
<tr>
<td>St. Louis Children’s Hospital</td>
<td>2523</td>
<td>4.8%</td>
</tr>
<tr>
<td>Barnes-Jewish South County</td>
<td>1109</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>54993</td>
<td></td>
</tr>
</tbody>
</table>

4.8% of CTs

50% Lower CT Utilization in Children

Pediatric CT Physics: A Radiologist’s Perspective

- Background
- Objective
- Reducing CT Utilization
- Reducing CT Dose
- Monitor our Results
- Summary
CT Head CTDI_{vol} Variation for St. Louis Regional Hospitals using Same Scanner

Dose Varies 45%

\[
\text{Dose} = k \times \text{DLP} = 0.0057 \times 1165 = 6.6 \text{ mSv}!!!!
\]

2 years, 2 months of background

Worst Case Scenario
8 year old scanned at a regional community hospital

<table>
<thead>
<tr>
<th>Scan</th>
<th>KV</th>
<th>mAs</th>
<th>ref.</th>
<th>CTDI_{vol}</th>
<th>DLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Position H-SP Topogram</td>
<td>1</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head W/O</td>
<td>2</td>
<td>120</td>
<td>420</td>
<td>58.40</td>
<td>1165</td>
</tr>
</tbody>
</table>

= k \times \text{DLP}
= 0.0057 \times 1165
= 6.6 \text{ mSv}!!!!
SLCH Case Scenario
8 year old scanned with full dose technique

“at what percentage of BG radiation is pediatric CT dose considered reasonably achievable?”
&
“why not image quality is the indicator for image acceptability?”

6 months of background

How much dose is enough to detect shunt malfunction?

Community Hospital
2 years, 2 month of background

SLCH
6 month of background

Community Dose is 4.7 times higher!
We Introduced a Low Dose Option
Shunt/Ventriculomegaly Protocol

Full Dose 1/3 Dose

We Introduced a No Dose Option
Rapid MRI using Ventriculomegaly Protocol

5-10 minutes without sedation
Process Control: CT Head

CT Head without IV Contrast

SLCH Age Adjusted Protocols (for Scanners without AEC)
Audit Your Practice
SLCH Ongoing QI

You can deliver consistently lower dose if you follow a program.
Recent Advances

- Upgrade our scanners
- Let the scanner do the work!
- Make the low dose (Shunt) protocol the standard
- Reserve full dose for trauma and kids who can’t get MRI (e.g., Cardiac ICU patients on ECMO)
- DICOM SR sent to a central dose monitoring database for improved tracking and reporting

Strategy #2: Upgrade Old Scanners

- Adaptive Shielding
- Automatic tube current modulation
- Patient specific tube voltage selection
- Iterative reconstruction
- Dual Energy
Ongoing Dose Reduction

19 yo with 14 CT Heads in 5 years

<table>
<thead>
<tr>
<th>Year</th>
<th>kV</th>
<th>mAs</th>
<th>CTDvol (mGy)</th>
<th>DLP (mGy.cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>120 kV</td>
<td>313</td>
<td>59.39</td>
<td>1153</td>
</tr>
<tr>
<td>2011</td>
<td>100 kV, AEC</td>
<td>455</td>
<td>43.64</td>
<td>770</td>
</tr>
<tr>
<td>2014</td>
<td>Iterative Recon</td>
<td>363</td>
<td>35.11</td>
<td>614</td>
</tr>
<tr>
<td>2015</td>
<td>Dual Energy</td>
<td>204</td>
<td>17.90</td>
<td>365</td>
</tr>
</tbody>
</table>

Ongoing Dose Reduction

19 yo with 14 CT Heads in 5 years

- **2011**: 120 kV, Fixed mAs, CTDvol = 59.39 mGy, DLP = 1153 mGy.cm
- **2011**: 100 kV, AEC, mAs = 455, CTDvol = 43.64 mGy, DLP = 770 mGy.cm
- **2014**: Iterative Recon, mAs = 363, CTDvol = 35.11 mGy
- **2015**: Dual Energy, mAs = 204, CTDvol = 17.90 mGy
Trauma (Full) Dose

<table>
<thead>
<tr>
<th>Scan</th>
<th>kV</th>
<th>mAs</th>
<th>CTDvol*</th>
<th>DLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topogram</td>
<td>120</td>
<td>34</td>
<td>0.26 S</td>
<td>6</td>
</tr>
<tr>
<td>Head</td>
<td>100</td>
<td>238</td>
<td>23.03 S</td>
<td>409</td>
</tr>
</tbody>
</table>

Est. Dose = 0.0032×415

= **1.3 mSv**

Standard (Low) Dose

<table>
<thead>
<tr>
<th>Scan</th>
<th>kV</th>
<th>mAs</th>
<th>CTDvol*</th>
<th>DLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topogram</td>
<td>120</td>
<td>34</td>
<td>0.26 S</td>
<td>6</td>
</tr>
<tr>
<td>Head</td>
<td>100</td>
<td>91</td>
<td>8.86 S</td>
<td>140</td>
</tr>
</tbody>
</table>

Est. Dose = 0.0032×146

= **0.47 mSv**
Low Versus Full Dose Scans

Dual Energy CT: Early Applications
Dose Neutral Bone Subtracted CTA
Dual Energy Contrast Enhanced CT

Dual Energy Bone Removal
DE CT: Metal Artifact Reduction by Monoenergetic Extrapolation

Dual-Energy CT
100/140 kV + Tin filter

Monoenergetic 70 keV
(Equivalent to conventional CT)

Monoenergetic 120 keV

Dose Neutral

Dual Energy
CTDI = 18.6 mGy
DLP = 1120 mGy cm

Routine Protocol
CTDI = 20.1 mGy
DLP = 1217 mGy cm

DE CT: Metal Artifact Reduction by Monoenergetic Extrapolation

Monoenergetic 70 keV
(Equivalent to conventional CT)

Monoenergetic 120 keV
Dual Energy CT: Metal Artifact Reduction

Pediatric CT Physics: A Radiologist’s Perspective

- Background
- Objective
- Reducing CT Utilization
- Reducing CT Dose
- Monitor our Results
- Summary
Initial Experience with Enterprise Wide Dose Monitoring at BJC Healthcare

Robert McKinstry, MD, PhD, FACR
James Duncan, MD, PhD
Mandie Street, RT(R)(MR),CSSGB
Bruce Hall, MD, PhD, MBA

Joint Commission Recommendations
“Effective” July 2015

Areas addressed in the new and revised standards include:

- Minimum competency for radiology technologists, including registration and certification by July 1, 2015
- Documentation of CT radiation dose in the ‘patient’s clinical record
- Collection of data on incidents where pre-identified radiation dose limits have been exceeded
BJC Healthcare
Net Revenues of $4 billion

1. Alton Memorial Hospital
2. *Barnes-Jewish Hospital
3. *Barnes-Jewish St. Peters Hospital
4. *Barnes-Jewish West County Hospital
5. Boone Hospital
6. Christian Hospital
7. Missouri Baptist Hospital
8. Missouri Baptist Sullivan Hospital
9. Northwest HealthCare
10. Parkland Health Center
11. *Progress West Hospital
12. *St. Louis Children's Hospital
13. The Rehabilitation Institute of St. Louis

*Covered by Mallinckrodt Institute of Radiology

BJC Enterprise Excellence Efforts

- Evaluation of Radmetrics implementation for managing CT doses
- Discussion of upcoming Radiology Joint Commission requirements
- Understanding current state of CT dose thresholds
- Evaluation of CT dose implementation for managing CT radiation exposure across 11 BJC hospitals.
- Exploration and evaluation of the current state of CT dose thresholds across the BJC Healthcare system.
- Standardization of protocol naming conventions for adult & pediatric CT protocols, reducing unique protocol names from 3209 to 2463.
Dose Monitoring Implementation

<table>
<thead>
<tr>
<th>Item</th>
<th>Target Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Approved</td>
<td></td>
<td>May-2013</td>
</tr>
<tr>
<td>BJH, SLCH, BJWC CT/ IR Implementation</td>
<td></td>
<td>Feb-2014</td>
</tr>
<tr>
<td>Mapping Training with Mandie Street</td>
<td>April 4, 2014</td>
<td>Apr-2014</td>
</tr>
<tr>
<td>Set Up West Server</td>
<td>April 7, 2014- Apr 21, 2014</td>
<td>Apr-2014</td>
</tr>
<tr>
<td>CT Final Testing and Site Training</td>
<td>May 19, 2014- June 6, 2014</td>
<td>May-2014</td>
</tr>
<tr>
<td>MBMC, MBS, SNE/W, BJSP, PW, Parkland, Alton, Boone</td>
<td>July 2014</td>
<td>May-2014</td>
</tr>
<tr>
<td>IR Implementation West Server</td>
<td>Nov 2014</td>
<td></td>
</tr>
<tr>
<td>Academic Dose Integration</td>
<td>Dec 2014</td>
<td></td>
</tr>
<tr>
<td>West Server Dose Integration</td>
<td>June 2015</td>
<td></td>
</tr>
<tr>
<td>C-Arms/ Fluoro Units</td>
<td>Late 2015</td>
<td></td>
</tr>
</tbody>
</table>

Dose Metric in Medical Record

- Our solution has the ability to send the dose metric to the RIS (Radiology Information System)
 - Update: Sending to RIS but not yet populating the report

- Deployed at SLCH November 2012
- Deployed at BJH March 2013
- Deployed on the West Server in 2014
- Goal – all of BJC will have dose metrics in the radiology report by July 2015
Current State

• Academic Server
 – All CT
 – All compatible IR Units

• West/Community Server
 – All CT

Washington University
Academic Medical Campus

St. Louis Children’s Hospital
DLP Head vs DLP Body

• All scanners use a
 – head (16cm) or
 – body (32cm) phantom to create a dose estimate

If the scanner used the head phantom to create the dose estimate then it would fall under the DLP head alerts – necks for example typically use the head phantom.
Dashboards

If you see an event above your threshold, in this case 3000 DLP, click it to learn about the exam.

“What does that mean in terms of acceptable risk?”
Auditing our Practice

1. Scanning beyond the range of the CT topogram
2. Inclusion of the shoulders

![Image](image.png)

<table>
<thead>
<tr>
<th>kV</th>
<th>mAs</th>
<th>ref.</th>
<th>CTDVoi</th>
<th>DLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>425 / 250</td>
<td>86.0</td>
<td>1728</td>
<td></td>
</tr>
</tbody>
</table>

Alerts

1. Global alerts – set per server
 a. CT
 i. Body DLP 5000
 ii. Head DLP 3000
 iii. Peds (0-18yrs) Body DLP 2500
 iv. Peds (0-18yrs) Head DLP 1500

2. Protocol alerts – set per protocol name
 a. None currently set
Alert Notification

All alerts are set on an individual user basis

- Email Alerts

- System Alerts
 - Viewable only once you login to the system

- Alert Icon

Exam Information

Tabs
- Dosimetry: Graphs/Organ doses
- Acquisitions: List of all acquisitions and parameters
- Analysis: Topogram with acquisitions displayed
- Patient Protocol: Dose information sheet from equipment
SLCH High Dose Analysis

Pediatric Head Alert Trigger-1500 DLP

Identified a Protocol with the Wrong kV setting
BJH Event Investigation

Analysis Tab

<table>
<thead>
<tr>
<th>Show</th>
<th>Parameter</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mAs</td>
<td>200.4</td>
<td>87</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Water-Equiv. Diam. (cm)</td>
<td>18.5</td>
<td>2.9</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>SSDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eff. Diam. Max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eff. Diam. (cm)</td>
<td>18.1</td>
<td>3</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>Centroid</td>
<td>3.9</td>
<td>13.7</td>
<td>10.4</td>
</tr>
</tbody>
</table>
Size Specific Dose Estimate

$$SSDE = \int \frac{X}{size} \times CTDI_{vol}^{32}$$

<table>
<thead>
<tr>
<th>Dim (cm)</th>
<th>Effective (cm)</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7.7</td>
<td>2.79</td>
</tr>
<tr>
<td>18</td>
<td>8.7</td>
<td>2.69</td>
</tr>
<tr>
<td>20</td>
<td>9.7</td>
<td>2.59</td>
</tr>
<tr>
<td>22</td>
<td>10.7</td>
<td>2.50</td>
</tr>
<tr>
<td>24</td>
<td>11.7</td>
<td>2.41</td>
</tr>
<tr>
<td>26</td>
<td>12.7</td>
<td>2.32</td>
</tr>
<tr>
<td>28</td>
<td>13.7</td>
<td>2.24</td>
</tr>
</tbody>
</table>

$$5.40 \, mGy \times 2.50 = 13 \, mGy$$

System-Wide Progress

- Capturing CT dose metrics via
- Enterprise Software Solution
Benchmarking our System with California

CT Head Academic Server
Sept 1 – Feb 11

Protocol Class Institution
Head H1 Spiral H2 Head H3 Spiral H3 Full Full DE Low Low DE
Trigger Frequency

Future State

All sites:
- West Interventional
- C-Arms
- Fluoro units (RF)
- Plain Film (CR/DR)
- Mammography

Ultimate Goal:
- All imaging equipment within each hospital (Cath Lab - etc.)
- Common Database for all of BJC
Summary

• Through our combined efforts at MIR and SLCH, we were able to cut CT utilization in children roughly in half over a 7-year period.
• We provide diagnostic CT image quality at lower dose while substantially reducing the estimated risk associated with excess medical radiation exposure.

Why are children at greater cancer risk from CT scan exposure than adults?

20%	1. They have hyperactive DNA repair
20%	2. They develop more cancers
20%	3. They have more CT scans
20%	4. They need more dose to maintain SNR
20%	5. They are more radiosensitive
Why are children at greater cancer risk from CT scan exposure than adults?

- Children are more radiosensitive than adults because of ongoing cell division and proliferation
- Kids have longer to live with risk after exposure
- Cancer is actually relatively rare in children
- You can decrease kV and mAs and maintain image quality in smaller children
- CT utilization is greater in adults than kids

Ref: Mathews JD, et al., BMJ. 2013 May 21;346:f2360

For the estimated effective dose equation:

\[E \ (\text{mSv}) = k \times DLP \]

- 20% 1. \(k \) is dependent on the patient age
- 20% 2. \(k \) is independent of the body part
- 20% 3. \(E \) is an accurate measure of the dose
- 20% 4. DLP is independent of the CTDI\text{vol}
- 20% 5. \(E \) is accurate for the phantom selected
For the estimated effective dose equation: \(E \, (\text{mSv}) = k \times \text{DLP} \)

- \(k \) is dependent on age
- \(k \) is tabulated by body region
- \(E \) is an estimate, it is not accurate
- \(\text{DLP} \) is dependent on \(\text{CTDI}_{\text{vol}} \)
- \(E \) is an estimate for the patient, not the phantom

Ref: AAPM Report No. 96

Effective dose estimates are only valid for

- 20% 1. Retrospective dose assessments
- 20% 2. Prospective radiological protection
- 20% 3. Standard 16 cm and 32 cm phantoms
- 20% 4. Comparison with different modalities
- 20% 5. Estimation of an individual's risk
Effective dose estimates are only valid for

- Prospective radiological protection purposes

E can be of some value for
- Comparing doses from different diagnostic/therapeutic procedures
- For comparing the radiation risks for different technologies.

E should not be used for
- Retrospective dose assessments or
- Detailed estimation of a specific individual's risk. Absorbed dose to irradiated tissues is the more appropriate quantity.

Ref: AAPM Report No. 96

To convert CT scanner output to SSDE, one needs

1. DLP and k-factor from AAPM #96
2. Tube Voltage kVp and effective mAs
3. CTDI_{vol} & cross sectional dimensions
4. Scan Length (L) and CTDI_{vol}
5. DLP and patient width from the CT
To convert CT scanner output to SSDE, one needs

$$SSDE = \int_{size}^{32} \times CTDI_{vol}^{32}$$

Why is SSDE important for pediatric patients?

- 20% 1. $CTDI_{vol}$ is not an accurate measure
- 20% 2. AEC is not effective in children
- 20% 3. $CTDI_{vol}$ cannot account for lower kV
- 20% 4. $CTDI_{vol}$ may underestimate dose
- 20% 5. DLP does not account with AEC

Ref: AAPM Report No. 204
Why is SSDE important for pediatric patients?

The dose received by a patient from a CT scan is dependent on both patient size and scanner radiation output. CTDI$_{vol}$ provides information regarding only the scanner output. It does not address patient size, and hence does not estimate patient dose (McCollough 2011). This is a concern, because for smaller pediatric patients, interpreting the displayed CTDI$_{vol}$ (or DLP) as patient dose—without recognizing the distinction between the two—could lead to underestimating patient dose levels by a factor of 2–3 if the 32 cm PMMA phantom was used for reference.

Interpreting CTDI$_{vol}$ (or DLP) as dose could … lead to underestimating patient dose ….

Ref: AAPM Report No. 204

Thanks for your attention!

Questions?
Comments?