FMEA Analysis of TG-142

Jennifer O'Daniel, Ph.D. Duke University Medical Center Spring Clinical AAPM Meeting, 2015

Acknowledgements

• Thanks to Dr. Fang-Fang Yin and all of the physicists at Duke University Medical Center for many useful conversations regarding both FMEA and TG-142.

Task Group 142

- Multitude of linear accelerator quality assurance tasks
- Prescribed acceptance limits and testing frequency

Klein et al.: Task Group 142 Report: QA of Medical Accelerators

П	T 4 7	D.T.	T7	т –	\mathbf{r}	0.00	١.	
	LA	$_{ m BL}$	ж.	Ι.	L	a 1	I١	١.

	Machine-type tolerance				
Procedure	Non-IMRT	IMRT	SRS/SBRT		
Dosimetry					
X-ray output constancy (all energies)					
Electron output constancy (weekly, except for machines with unique e-monitoring requiring daily)		3%			
Mechanical					
Laser localization	2 mm	1.5 mm	1 mm		
Distance indicator (ODI) @ iso	2 mm	2 mm	2 mm		
Collimator size indicator	2 mm	2 mm	1 mm		
Safety					
Door interlock (beam off)		Functional			
Door closing safety		Functional			
Audiovisual monitor(s)		Functional			
Stereotactic interlocks (lockout)	NA	NA	Functional		
Radiation area monitor (if used)		Functional			
Beam on indicator		Functional			

Institution-specific TG142?

- "Institutional deviations from some of these recommendations are expected based upon the institution's policy and procedures..."
- To change the frequency of a particular test:
 - Review an appreciable history of results
 - Consider the potential impact of failure
 - Perform an FMEA analysis

Failure-Mode & Effects Analysis

- Create a process map
- Identify weak points
- Score each weak point
 - Occurrence = frequency of failure
 - Severity = effect of failure
 - Detectability = probability of <u>not</u> detecting the failure
- Rank and prioritize by score
 - RPN = risk priority number = O*S*D
- Develop mitigation strategies

TG100 FMEA analysis of IMRT

- Human error (44%)
 - Human failure
 - Inadequate training
 - Lack of communication

- Saiful Huq, New paradigms for quality management in radiation therapy. Presentation at 2011 AAPM summer school. AAPM Virtual Library.
- Inadequate procedures/resources (31%)
- Hardware/software failures (13%)
- Design or commissioning failure (8%)
- Others (4%)

Top ten failure modes of external beam radiotherapy Ford et al, Med. Phys. 41, (2014);

Failure mode	Cause	Process step	s	o	D	RPN
Delay in film check.	Films not assigned to physician in queue.	Tx delivery	8	10	5	400
No pacemaker protocol/consent for patient with a pacemaker.	Simulation staff did not check H&P or query patient.	Simulation	10	5	5	250
Critical structure not contoured in treatment planning system.	Oversight of physician.	Tx planning	10	4	6	240
Pregnant patient simulated without the team's knowledge of the pregnancy.	Patient does not know she is pregnant and/or was not asked. Unclear policy.	Simulation	10	2	10	200
Tomotherapy blocks turned off. Directional blocking for critical structure.	Oversight by physicist in planning.	Tx planning	5	3	10	150
RTT unaware of Rx or fractionation change, e.g., change when boost starts.	Communication lapse between teams.	On-Tx Mgmt	3	8	5	120
Unclear setup instructions from simulation, e.g., two scans performed. (Supine vs prone) for planning evaluation.	Communication lapse between teams as to final directives for setup.	Tx planning	4	5	6	120
Prior treatment records not available.	Chart archived offsite or patient arrives without records.	Pt assessment	10	2	5	100
Wrong couch kicks or table angles entered in R&V system.	Oversight of planner. Confusion due to different labeling conventions on different machines.	Tx planning	10	9	1	90
DukeMedicine n contouring is	Communication lapse between teams.	Tx planning	10	3	3	90

Top ten failure modes of External Beam Radiotherapy Ford et al, Med. Phys. 41, (2014);

- Human error = 4
- Communication lapse = 3
- Policy not followed = 2
- Outside our realm of influence = 1
- Hardware/software errors = o

How to determine the relative importance of TG-142 tests?

- Determine detectability
- Determine failure rate
- Determine the underlying machine failure
 - Determine the severity if that failure should occur
- Account for frequency of test performance
 - % of time the failure was present over a course of treatment
 - Number of patients affected by the error

Ranking: Detectability

Rank	Detectability: Estimated probability of the failure going undetected(%)			
	TG100 and this study			
1	<= 0.01%			
2	<= 0.2%			
3	<= 0.5%			
4	<= 1.0%			
5	<= 2.0%			
6	<= 5.0%			
7	<= 10%			
8	<= 15%			
Duke Medicine	<= 20%			
Dakerviculence	> 20%			

Data: Occurrence

- Occurrence: 3 Varian 21EX linear accelerators x 3 years= 9 years
 - Daily, weekly, monthly & annual QA
 - Post-TG142 implementation
- 2,348 treatment days analyzed
- Minimum detectable occurrence rate = 0.04%

Ranking: Occurrence

Rank	Occurrence: Frequ	Occurrence: Frequency of Failure (%)					
	TG100	This study					
1	<= 0.01%	<= 0.01%					
2	<= 0.02%	> 0.043% (0/2348)					
3	<= 0.05%	<= 0.043% (1/2348)					
4	<= 0.1%	<= 0.1%					
5	<= 0.2%	<= 0.2%					
6	<= 0.5%	<= 0.5%					
7	<= 1%	<= 1%					
8	<= 2%	<= 2%					
9	<= 5%	<= 5%					
Duke Medicine	> 5%	> 5%					

Data: Severity

- Severity: Model error in treatment planning system (Eclipse v11)
 - 10 head-and-neck IMRT patients
 - Primary PTV (40-50Gy)& boost PTV (50-70Gy)
 - Spinal cord

Ranking: Severity

Rank	TG100	This	study
		Change in %-Volume of PTV at Rx Dose	Change in Maximum Dose to Cord
1	No effect	<= 1%	<= 45cGy (1%)
2		<= 2%	<= 90cGy (2%)
3	Inconvenience	<= 3%	<= 135cGy (3%)
4	Minor dosimetric error	<= 4%	<= 180cGy (4%)
5	Limited toxicity or	<= 5%	<= 225cGy (5%)
6	tumor underdose	<= 10%	<= 450cGy (10%)
7	Potentially serious	<= 15%	<= 675cGy (15%)
8	toxicity or tumor underdose	<= 20%	<= 900cGy (20%)
9	Potentially very serious toxicity or tumor underdose	> 20%	> 900cGy (20%)
Duke Medicine	Catastrophic	Medical Event	Medical Event

Assumptions

- Routine preventative maintenance tasks are performed on schedule
 - E.g. Image quality is adjusted regularly (CBCT recalibrated annually, kV & MV dark/flood fields redone on a regular basis)
- When accidents/repairs/service occur, appropriate QA tasks are done afterwards.

Assumptions: Drift

• Errors will be modeled at their tolerance limits.

Analysis 1: Daily QA

- 1) Output (3%)
- 2) Laser localization (1.5mm)
- 3) ODI @ iso (2mm)
- 4) Jaws vs. light field (2mm)
- 5) MV/kV/CBCT: position/reposition (<= 2mm MV/kV; <= 1mm CBCT)
- 6) MV/kV/CBCT: imaging vs. treatment isocenter (<= 2mm)
- 7) Linac safety: door interlock, door operation, A/V, radiation area monitor, beam on indicator
- 8) Imaging safety: collision interlocks

Occurrence: Daily QA

Daily QA Test	Number of Adjustments	Occurrence (% of total days of operation)
Output	86	3.7%
Laser	19	0.8%
CBCT Pos/Repos	10*	0.5%
ODI	2	0.09%
Jaws vs. Light Field	0	< 0.05%
kV/MV Pos/Repos	0	< 0.05%
Imaging vs. Tx Iso	0	< 0.05%
Imaging Safety	0	< 0.05%
Linac Safety	0	< 0.05%

Occurrence: Daily QA

Severity: Associated Errors

- 1) Output → 1)
 2) Lasers → ...2)
- 3) ODI
- 4) Jaws vs. LF
- 5) Imaging pos/repos
- 6) Imaging vs. tx isocenter
- 7) Linac safety
- 8) Imaging safety

Dose variation

3D translational displacement (1.0mm, 1.5mm & 2.0mm)

A/P translational displacement

Jaw size change

Linac and imaging safety

- Door interlock & closing safely -> irradiation of RTTs and other nearby personnel or patients
- A/V monitors -> safety of patient within room
- Beam-on indicator -> secondary safety check
- Imaging collision interlocks -> patient injury
- Conclusion: Perform daily.

Median of 10 Patients: Decrease in %-Volume Coverage of Prescription Dose for PTV-Primary

Median of 10 Patients: Decrease in %-Volume Coverage of Prescription Dose for PTV-Primary

QA Frequency vs. Number of Patients

Daily QA Weighted RPN

	Daily	Weekly	Bi-weekly	Monthly	Bi-monthly
Output					
Lasers					
CBCT Pos/Repos					
Image Quality					
ODI					
Imaging vs. Tx Iso					
MV/kV Pos/Repos					
Jaws vs. LF			-	Duke	ledicine
				Dukeiv	ledicirie

Patient-Load-Weighted RPN: Occurrence * Severity (QA frequency) * Number of Patients Affected (QA frequency)

FMEA of TG-142 Monthly QA

Output

Dosimetry

X-ray output constancy Electron output constancy Backup monitor chamber constancy

Mechanicals

Mechanical

Light/radiation field coincidence^b
Light/radiation field coincidence^b (asymmetric)
Distance check device for lasers compared with front pointer
Gantry/collimator angle indicators

(@ cardinal angles) (digital only)
Accessory trays (i.e., port film graticle tray)
Jaw position indicators (symmetric)^c

Jaw position indicators (asymmetric)^d

Cross-hair centering (walkout)

Treatment couch position indicators^e

Wedge placement accuracy

Compensator placement accuracy^f

Latching of wedges, blocking tray⁸

Localizing lasers

Imaging

Planar MV imaging (EPID)

Imaging and treatment coordinate coincidence (four cardinal angles)

Scaling^b

Spatial resolution

Contrast

Uniformity and noise

Planar kV imaging

Imaging and treatment coordinate coincidence (four cardinal angles)

Scaling

Spatial resolution

Contrast

Uniformity and noise

Cone-beam CT (kV and MV)

Geometric distortion

Spatial resolution

Contrast

HU constancy

Uniformity and noise

Occurrence: Monthly QA

Daily QA Test	Number of Adjustments	Occurrence (% of total days of operation)
Output	86	3.7%
Laser	19	0.8%
CBCT pos/repos	10*	0.1%
Light field vs. Radiation	3	0.13%
ODI	2	0.09%
MV spatial resolution & contrast	1	0.04%
Everything else!	0	< 0.05%

Severity: Associated Errors

- Output
- 2) Mechanicals
- 3) Imaging

- 1) MU variation
- 2) 3D translational displacement (1.0mm & 2.0mm)
- 3) A/P, R/L, and S/I translational displacement
- 4) Jaw size change
- 5) Gantry/collimator/couch angle change

PTV-Primary: Dose Variation of Patient 2

Median of 10 Patients: Decrease in %-Volume Coverage of **Prescription Dose for PTV-Primary**

Image Quality Severity

- Estimate
 - Less severe than a consistent 1.5-2mm 3D translation

	Daily	Weekly	Bi-weekly	Monthly	Bi-monthly
Imaging vs. Tx					
Iso/Image Scaling/	1	2	5	6	6
MV/kV Pos/Repos					
Jaws vs LF	1	2	3	6	6
Lasers	1	2	3	5	5
Image quality	1	2	3	4	4

Monthly QA Weighted RPN

	Daily	Weekly	Bi-weekly	Monthly	Bi-monthly
Lasers					
Output					
CBCT Pos/Repos					
Light Field vs. Rad					
Imaging vs. Tx Iso, MV/kV Pos/Repos, Scaling					
Jaws vs. LF					
Image Quality, ODI					
Couch Lateral				Duke Medicine	

Patient-Load-Weighted RPN: Occurrence * Severity (QA frequency) * Number of Patients Affected (QA frequency)

Monthly QA Priorities

Discussion: TG142 Monthly QA

Monthly: Output

Lasers Jaws vs. LF, LF vs. Rad

Imaging vs. tx iso
Image scaling
Imaging pos/repos

Bi-Monthly: Collimator Couch Lat ODI

Image quality

Every-6Months:
Gantry
Couch Lng

Annual: Couch Angle

Open questions

- What is the appropriate severity for image quality failures?
- If daily imaging is used, should lasers become less essential?

Efficient and Effective Linac QA:

• "...the QA program should be flexible enough to take into account quality, costs, equipment condition, available test equipment, and institutional needs." – TG142

Efficient and Effective Linac QA:

- Depend upon equipment & patient population
- Focus on tests with high severity and/or high occurrence ranks
- Varian 21EX linacs & H&N IMRT patients:
 - Focus on lasers and output
 - Daily QA: consider reducing imaging QA to weekly frequency, certain mechanicals to bi-weekly frequency
 - Monthly QA: consider reducing frequency of image quality QA & certain mechanical QA tests

Thanks for your attention!

