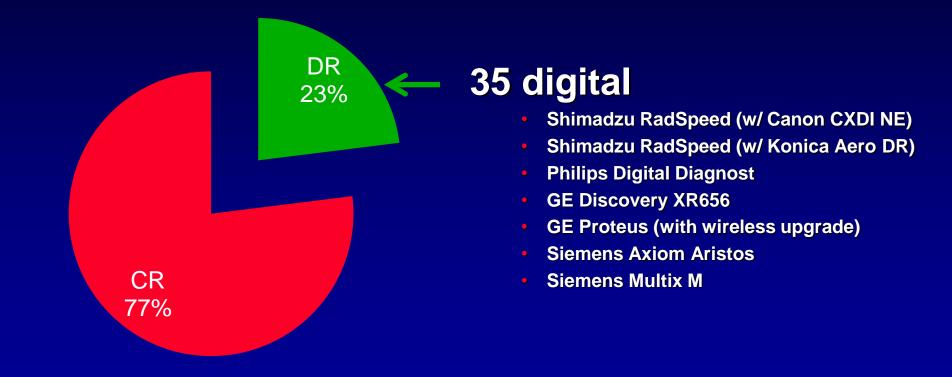


Implementation of a Large-Scale DR QC Program

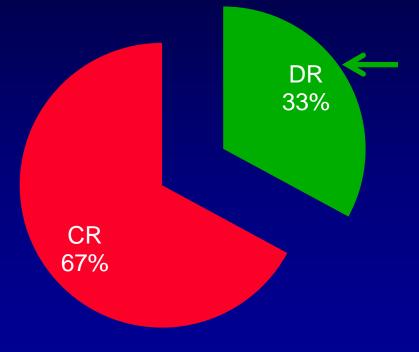
March 10, 2015 Katie Hulme, MS, CRE, DABR

CCF System

49 outpatient health centers



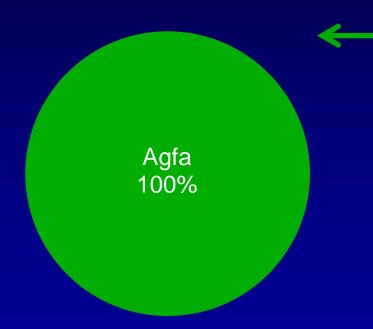
9 affiliate hospitals


Breakdown of Equipment

142 Radiographic Rooms

Breakdown of Equipment

76 Mobile Units



25 digital

- Agfa DX-D 100
- Shimadzu Evolution (with Konica Aero DR)
- Shimadzu MobileDart (with Canon CXDI NE)
- **DRX-1** Retrofit (Carestream)

Breakdown of Equipment

96 CR Readers

All Agfa Readers

- ADC Compact Plus
- CR-25
- CR-75
- DX-S
- DX-G
- DX-M

Generator Tube CR Plates (Cleaning and Erasure) Patient Entrance Skin Exposure

Digital Detectors CR Readers

Digital Quality Control

Performance Testing (*Physicist*)

TG-150

Ongoing QC (*Technologist*)

TG-151

Performance Testing Back in 2010...

- 1. Evaluation of Technologist QC Program
- **2.** Visual Inspection of Room and Equipment
- **3.** Acquisition Workstation Monitor Check
- 4. HVL, kVp Accuracy, and Output Measurements
- **5.** Exposure Reproducibility and Linearity
- 6. Timer Accuracy
- 7. Manual Tabletop Collimation
- 8. X-Ray to Light Field Congruence
- 9. Positive Beam Limitation
- **10.** Exposure Index Verification
- **11. Automatic Exposure Control**
- **12.** Detector Evaluation
- **13.** Patient Incident Air Kerma
- 14. Kerma Area Product Accuracy

Technologist QC Back in 2010...

- 1. IP Inspection
- 2. IP Erasure
- **3.** IP Cleaning
- **4.** DR Detector Calibrations / Automated Self-Tests
- 5. Reject Analysis

Talk Overview

- CCF Experiences with:
 - CR Plates and Readers
 - Dose tracking
 - Patient Incident Air Kerma
 - Exposure Index Verification
 - AEC Calibration and Verification
 - Ongoing Exposure Analysis
 - Things to ask your FSE at acceptance!!

CR Plates and Readers CCF Experience

Overview: CR QC

QC for Imaging Plates (IP's)

QC for CR Readers

Overview: CR QC

• Tests and Tolerance:

- Use Vendor Specs

In the absence of recommendations:

- Use TG-10!

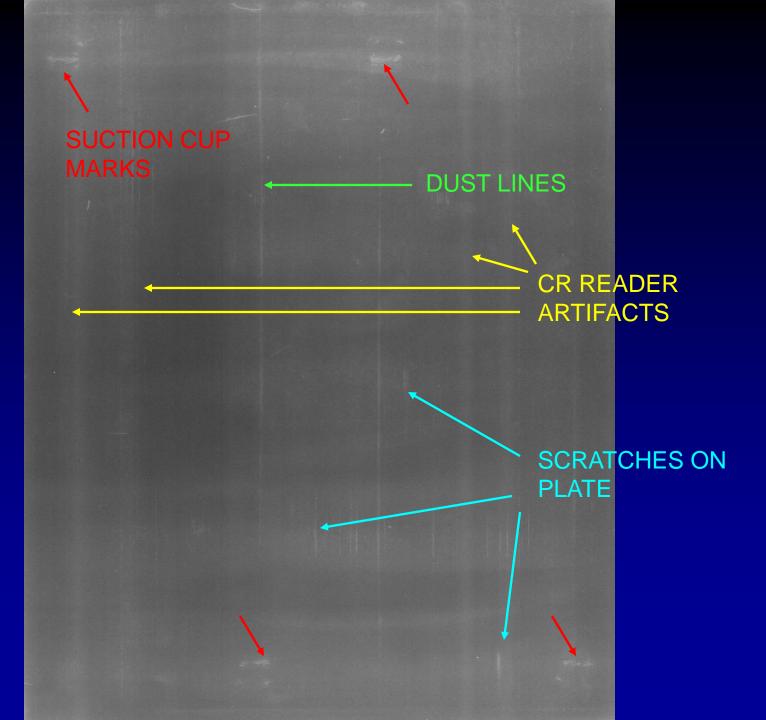
IP Performance Testing

- Exposure Index
 - Detector sensitivity can vary with phosphor batch
- Artifacts
- Detector uniformity
 - Qualitative vs. Quantitative

IP Performance Testing

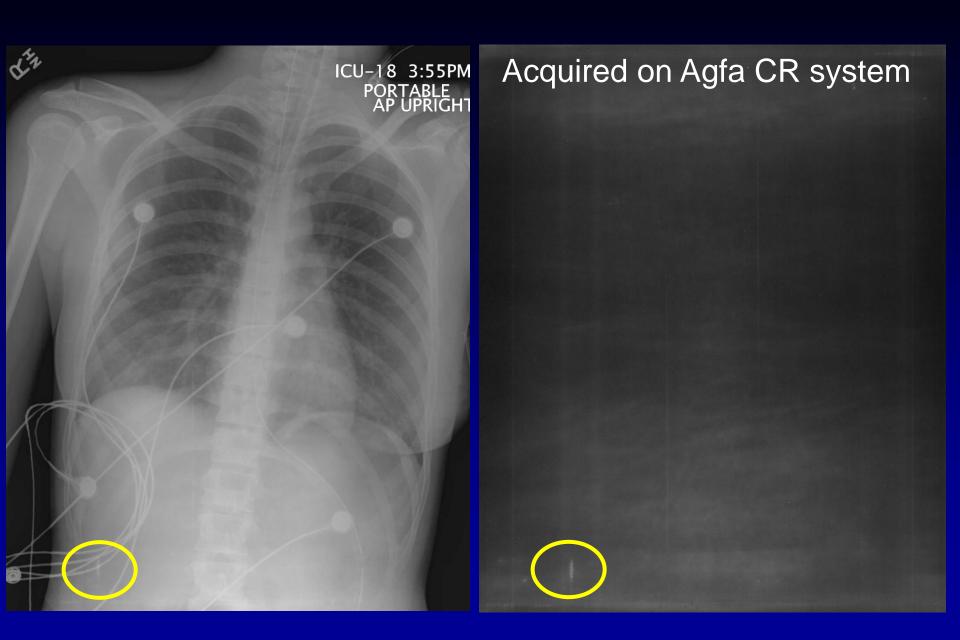
TECHNOLOGIST

during routine plate cleaning



Inventory of all IP's

- Physical inspection for defects
- Uniform exposure of each IP
- Evaluate flat-field image for artifacts
- Remove damaged plates from service

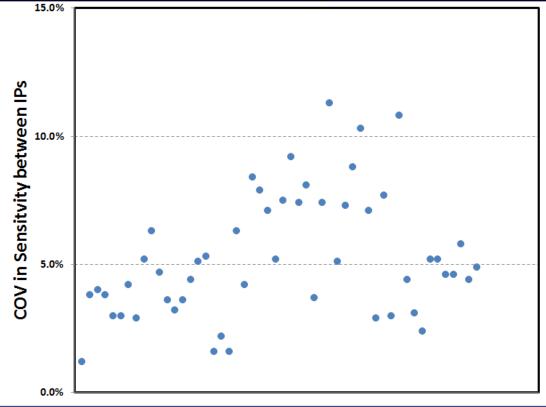

PHYSICIST during annual performance evaluation

INSPECTION =

'HALO ARTIFACT': chemical degradation of plate from improper plate – cleaning solution and direct application of cleaning solution

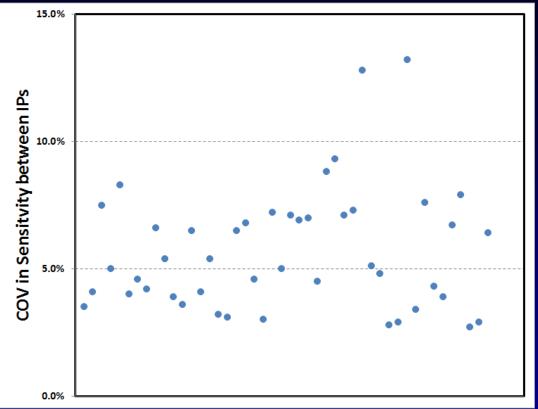
Cleaning Mistakes:

- Using incorrect cleaning solution
- Not wearing gloves
 - Lotion w/ UV protection will block signal!!
- Applying uneven pressure across plate
 - i.e. rough back and forth motion instead of smooth circular motion
- Not allowing screens sufficient time to dry before putting them back into cassettes


Exposure Index Verification and Uniformity															
Exa	am Tag	Delay			Filtration			S	ID	k٧	/p	mAs	μGy	(IP)*	
	FFPI	0 min			21 mm Al			15	0.0	75	.0	10	20.3		
* Value for double exposure w/ reported technique															
					Artifacts (mark 1 if present, 2 if significant, 3 if unacceptable)										
Plate Label	Plate ID	Size	IS/ OOS	EI	P/F	~~	310 0	leaning	9 Stree	sts N Cup N	arts water	ther	Comments	Total Score	*
	QC1	14" x 17"	IS	2150	Р								QC plate	0	Е
	1	14" x 17"	IS	2091	Р	2							FLFS	2	OK
	3	14" x 17"	IS	2255	Р			1					FLFS	1	G
	5	14" x 17"	IS	2148	Р								FLFS	0	E
	7	14" x 17"	IS	2046	Р									0	E
	8	14" x 17"	IS	2177	Р									0	E
	24	14" x 17"	IS	2076	Р			2		1				3	RFS
	26	14" x 17"	IS	2336	Р				1					1	G

* E = Excellent condition (score of 0), G = Good (1), OK = Adequate (2), RFS = Remove from service (score ≥3)							
Expected EI:	2028						
Plate Average:	2103			Tolerance Criteria:			
Tolerance Criteria (Single Plate) EI:	Min:	1682.7	Max: 2524	±20% of plate average			
SD in Sensitivity:	109.0	COV:	5.2%	COV<±10% across all plates			

Characteristics	Quantity of Interest	Acceptable Tolerance				
Dark noise	Average signal and its standard deviation within 80% of the image area	$\frac{E < 0.012 \text{ mR}}{\sigma_{_{\rm E}} / E < 1\%}$				
Uniformity	Signal standard deviation within 80% of the image area, and the standard deviation of the average screen signal among screens	$\sigma_{\rm E} < 5\%$				
Exposure calibration	The exposure indicator response expressed in terms of exposure to 1 mR entrance exposure	$E_{measured} = 1 \pm 10\%$				
Linearity and autoranging	The slope of the system response (expressed in terms of logarithm of exposure) vs. logarithm of actual exposure	Slope = $1 \pm 10\%$ Correlation coefficient > 0.95				
Laser beam function	Jitter dimension in pixels	Occasional jitters < ±1 pixel				
Limiting resolution	Maximum discernible spatial frequencies of a high-contrast line-pair along scan, sub-scan, and 45° axes	$\begin{array}{l} \mathbf{R}_{\mathrm{scan}} / f_{\mathrm{Nyquist}} > 0.9 \\ \mathbf{R}_{\mathrm{sub\text{-scan}}} / f_{\mathrm{Nyquist}} > 0.9 \\ \mathbf{R}45^{\circ} / (1.41 f_{\mathrm{Nyquist}}) \\ > 0.9 \end{array}$				
Noise and low-contrast resolution	A linear fit of system noise (expressed in terms of logarithm of corresponding $\sigma_{\!_E}$ / E to logarithm of actual exposure	Correlation coefficient > 0.95				
Spatial accuracy	The difference between the measured (d_m) and actual distances (d_0) in orthogonal directions	$(d_m - d_0)/d_0 < 2\%$				
Erasure thoroughness	Average signal and its standard deviation within 80% of the reread/unexposed image	$\frac{E < 0.012 \text{ mR}}{\sigma_{_{\rm E}} / E < 1\%}$				
Aliasing/grid response	No quantitative tolerance levels					
IP throughput	Measured throughput in screens per hours (T_m) and the specified throughput (T_0)	$(T_0 - T_m) / T_0 < 10\%$				
[Adapted from Table XIV in reference 56 with permission from AAPM.]						


[Adapted from Table XIV in reference 56 with permission from AAPM.]

Intial Results (2010-2011)

- 1089 plates
 - 193 removed from service due to damage (~18%)
- Average SD of 5.1% in sensitivity between screens at a single facility

2014 Results

940 plates

30 removed from service due to damage (~3%)

 Average SD of 5.5% in sensitivity between screens at a single facility

Performance Testing (TG-10)

CR Reader – FLYING SPOT

Dark Noise and Uniformity

Exposure Indicator Calibration Accuracy

Linearity and Auto-ranging Response

Laser Beam Function

Limiting Resolution and Resolution Uniformity

Noise and Low-Contrast Resolution

Spatial Distance Accuracy

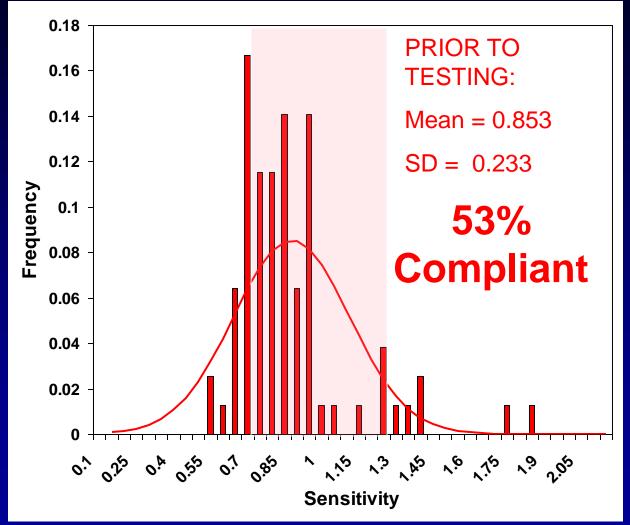
Erasure Thoroughness

Aliasing / Grid Response

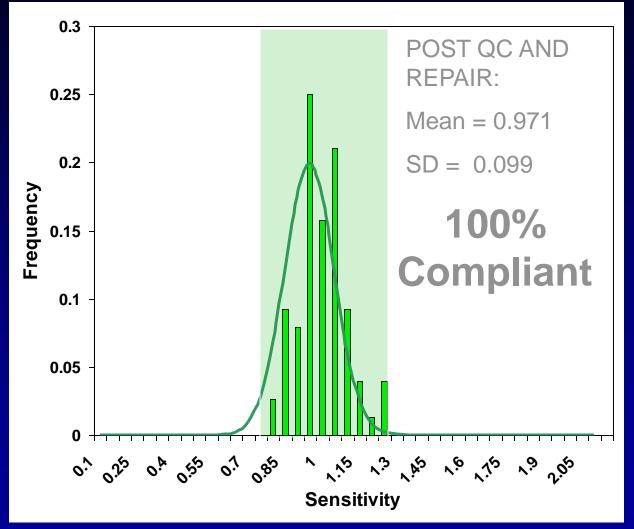
IP Throughput

AUTOQC² Phantom

Agfa's Auto QC2 TM: Second-generation Quality Control for Computed Radiography Systems, White Paper (10/30/2006)


Exposure Indicator Accuracy

- How well matched should my readers be?
 - ±25% should be achievable
 - TG-10 recommends readers be matched within ±10%
 - Can adjust the high-voltage settings on some units
 - In other cases have to replace the PMT


Clinical Experience....

- 80 readers (Agfa)
- 38 units required PMT replacement (~50%)

Prior to testing:

Post QC and Repair:

2014 results

- 82 readers
 - 3 failures
 - 1 sensitivity failure
 - 1 uniformity failure
 - 1 SNR failure (minor)

Periodic QC (TG-10, TG-151)

TECHNOLOGIST QC	Recommended Frequency TG-10	CCF
Printer QC (density test)	Daily	Daily
Cassette Erasure	Monthly (or as needed)	Every other day
Plate Cleaning	Quarterly (pending environment)	Monthly / Quarterly
QC of Clinical Images (Artifact Identification)		
QC Phantom (resolution, contrast/noise, laser jitter, EI accuracy)	Monthly	n/a
SMPTE Pattern for PSP QC Workstation	Monthly	n/a
Reject Analysis	Quarterly*	Monthly
Dose Monitoring	Quarterly*	n/a

*TG-151 recommends *monthly*

Next Steps

- Program for QC of Clinical Images
- QC for acquisition workstations

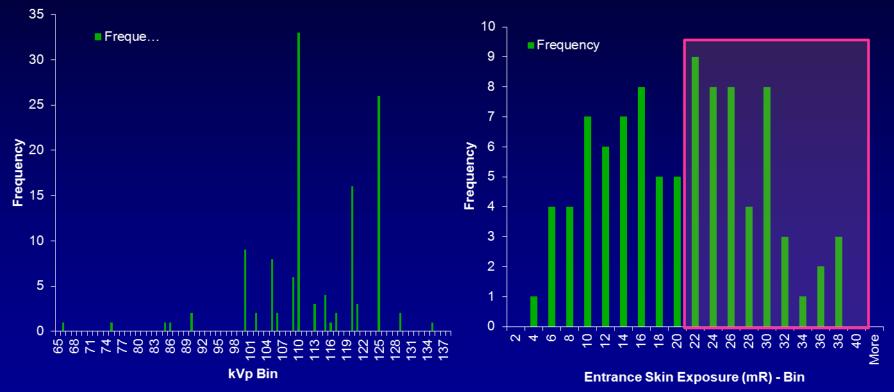
Dose Tracking (Annual) CCF Experience

Dose Tracking – Annual (Physicist)

- Tube Output, HVL
- Incident Air Kerma (K_{a,i}) Measurements
 - 'typical' doses
 - references for limits / reference levels:
 - NCRP 172
 - NEXT Surveys
 - State regulations
- AEC evaluation
 - El is useful for this as well!
 - TEIs will be correlated w/ cutoff dose

Accuracy of metric used for ongoing QC

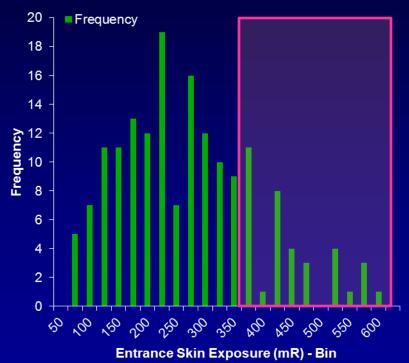
- DAP, El, etc.


CCF Patient Incident Air Kerma (IAK)

- GOAL:
 - to reduce average patient doses for common radiographic exams to below 3rd quartile NEXT* data for ALL sites

Where we were (2010)...

PA Chest (Stationary Rad)


EXCEEDING NEXT 3rd QUARTILE

Where we were (2010)...

60 Frequency 50 40 Frequency 00 20 10 0 kVp Bin

AP Abdomen

AP Abdomen

EXCEEDING NEXT 3rd QUARTILE

CCF Patient Incident Air Kerma (IAK)

• HOW:

- kVp standardization for select exams
 - Enables comparison of IAKs between sites with <u>same</u> system
- Development and documentation of image-based methodology for in-house AEC evaluation and calibration
- Instituted new CCF limit for IAK
 - Identify outliers during annual testing

*NEXT = National Evaluation of X-Ray Trends(CRCPD Pub. No. E. 03-2)

CCF IAK Limits

					ESE F	Range	CRCPI	D, Pub No	. E-03-2, Ta	ble 4	
					quot	ed by					
	0	Н	CCF ESE		ODH		NEXT Data		NEXT Data		ТХ
	Lin	nit	Standard		Min	Max	Q3	Q3	Av	Av	Limit
	(mGy)	(mR)	(mGy)	(mR)	(mR)	(mR)	(mGy)	(mR)	(mGy)	(mR)	(mR)
AP Abdomen	5.26	600	3.40	388	300	490	3.469	396	2.374	271	450
AP Lumbar	6.13	700	4.20	479			4.179	477	2.996	342	550
AP Thoracic	3.50	400	2.27	325							325
AP Cervical	1.75	200	1.75	200					1.183	135	120
LAT Skull	1.75	200	1.75	200					1.270	145	150
DP Foot	0.88	100	0.31	35	8	35					50
PA-AP Chest w/ Gr	0.35	40	0.26	30	10	15	0.158	18	0.114	13	30
PA-AP Chest woo Gr	0.26	30	0.18	20			0.123	14	0.079	9	20
PA-AP Chest w/ Gr	0.35	40	0.26	30	10	15	0.158	18	0.114	13	30

NEXT = National Evaluation of X-Ray Trends CRCPD = Conference of Radiation Control Program Directors

CCF IAK Limits

								Measured Air Kerma	Incident Air Kerma K _{ai}		
	Grid Y/N	SID (cm)	AEC cell(s)	Dens	kVp	mAs	Patient Size (cm)	Measured @ SCD (mGy)	K _{a,i} @ SSD (m Gy)	ODH Limit (mGy)	CCF Limit (mGy)
AP Abdomen	Y	102	LRC	0	80		23			5.26	3.40
AP Lumbar	Y	102	С	0	80		23			6.13	4.20
AP Thoracic	Y	102	С	0	75		23			3.50	2.27
AP Cervical	Y	102	С	0	74		13			1.75	1.75
LAT Skull	Y	102	С	0	76		15			1.75	1.75
DP Foot	Y	102	С	0	60		8			0.88	0.31
PA-AP Chest*	Y	102					23			0.35	0.26
PA-AP Chest*	Ν	102					23			0.26	0.18
PA-AP Chest	Y	182	LR	0	120		23			0.35	0.26

* Measure for portables ONLY

CCF IAK limit tripped→ re-calibrate AEC according to CCF methodology

CCF IAK limit tripped

re-calibrate AEC according to CCF methodology

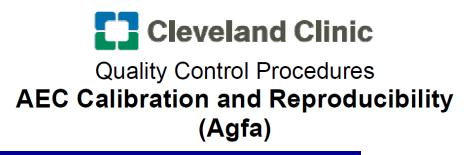


Table 1: Target EI values for AEC calibration

Plate Type	Target El (100% Sensitivity)	Tolerance
Agfa MD4.0 (Table)*	400	±30%
Agfa MD4.0 (Upright Bucky: Non-Chest)*	400	±30%
Agfa MD4.0 (Upright Bucky: Chest)	600	±30%
Agfa HD5.0 (Table)*	350	±30%
Agfa HD5.0 (Upright Bucky: Non-Chest)*	350	±30%
Agfa HD5.0 (Upright Bucky: Chest)	525	±30%

*Tested during acceptance and annual

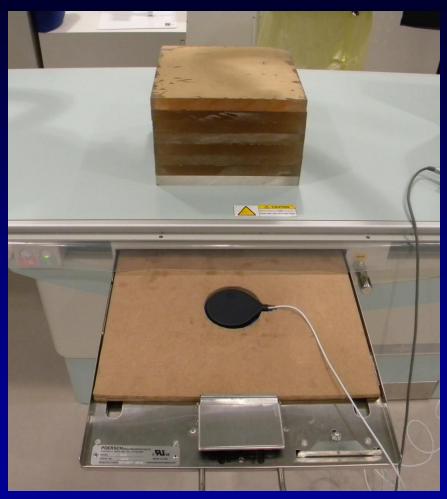


Figure 1: Placement of ROI on image of acrylic. Use default ROI size and record EI, PVI-log, and SD.

Ξ

- Cassette (CR) or wood board with cutout for dosimeter
 - Use of cassette more accurately simulates clinical response
- Ion chamber measurements will included backscatter
 - Solid-state dosimeter with lead backing are more appropriate for measuring K_a

Pre-Detector K_a

- For DR systems with fixed detector have to measure the K_a outside the bucky
 - Don't have to worry about backscatter
 - BUT have to account for grid

Ξ

ROI can matter

- Make sure to use the appropriate exam tag
- Know the VOI used for EI calculation
- If using a target EI:
 - Must verify accuracy of exposure indicator and account for it
 - For CR
 - Time between image and readout must be kept consistent
 - Use QC plate or plate of median sensitivity

Exposure Index (IEC 62494-1)

 IEC 62494-1 standard states that the El shall be calibrated such that:

- Where
 - K_{CAL} is the receptor air kerma (in µGy) under calibration conditions
 - $C_0 = 100 \ \mu Gy^{-1}$

Exposure Index (IEC 62494-1)

 Inverse calibration function is defined as:

$$K_{CAL} = g(V_{CAL}) = f^{-1}(V_{CAL})$$

 Inverse calibration function should have an uncertainty of <u>less than 20%</u>

Calibration Conditions (IEC 62494-1)

- Fixed radiation quality
 - RQA5
- Homogenous irradiation of image receptor
- Measurement of incident air kerma (free in air, no backscatter)
- Value of Interest (VOI) calculated from central 10% of image area for flat field images

Remember

- You want to neutralize image processing!
 - Processing can affect quantitative analysis and reproducibility
 - You want a fixed relationship between PV and incident air kerma under a defined beam quality

Choice of Target

 Most newer DR systems provide recommended target K_a or El values for AEC calibration

DR MANUFACTURERS AEC Sensitivity Calibration

	kVp	Grid?	Phantom	Target K _a
GE Flashpad (Csl)	80	No	20 mm Al	2.5
Siemens (Csl)	70	No	0.6 mm Cu	2.5
Agfa DX-D (CsI)	70	No	25 mm Al	2.5
Philips	70	No	25 mm Al	2.5
Carestream DRX1-C	80		0.5 mm Cu + 1.0 mm Al	2.5
Canon CXDI-70C	80	Yes	20 cm PMMA	2.5

 Can calculate expected EI or PV for target K_a under AEC calibration conditions

AEC Calibration Phantoms

AEC Calibration Phantoms

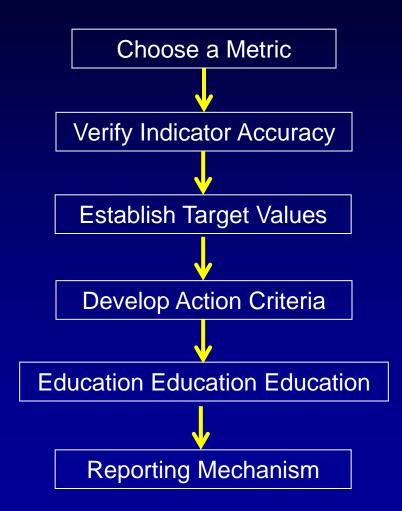
- Beam spectra is IMPORTANT
- Using 21 mm Al vs. 20 cm PMMA
 - will get fairly equivalent results for sensitivity calibration and kVp correction (Doyle 2006)
- Using 'large' amounts of Copper (2 mm) will affect kVp correction curve
 - ~10% difference compared to other phantoms
 - higher correction @>80, lower <80
 - 0.5 mm Cu equivalent spectrum to 20cm PMMA, but results in VERY short exposure times (Doyle 2006)

 El Calibration and AEC Calibration conditions are not always the same!

Where we are NOW:

AP Abdomen Exams Incident Air Kerma (mGy) for an Average Patient 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Philips Digital GE Discovery / RadSpeed RadSpeed RadSpeed Siemens (Agfa HD5.0) (AeroDR Multix (Canon Diagnost Proteus CXDI-70C) 1417HQ) (Trixell (Flashpad) **PIXIUM 4600)**

PA Chest Exams Incident Air Kerma (mGy) for an Average Patient 0.3 0.25 0.2 0.15 0.1 0.05 0 RadSpeed RadSpeed RadSpeed Philips Digital GE Discovery Siemens (Agfa HD5.0) (AeroDR Diagnost Multix (Canon / Proteus CXDI-70C) 1417HQ) (Trixell (Flashpad) **PIXIUM 4600)**


Next Steps

- Establish upper and <u>lower</u> action limits for IAK
 - Stratified by system / detector

Ongoing Exposure Analysis

Still in it's infancy....

Dose Tracking – Ongoing

K_{a,i} - Limitations

- 'Average' patient doses do not necessarily reflect actual patient dose or the distribution in patient doses
 - Measurements do not indicate adherence to technique charts (manual)
- Phantoms represent a limited range of exam types and body parts
- Metrics are not suitable for ONGOING QC
 - Require a level of expertise (and equipment) to measure

Dose Tracking – Ongoing

WHAT INFORMATION IS AVAILABLE TO YOU??

Exposure Index

- DICOM tags*: El(0018,1411), TEI (0018,1412), DI (0018,1413)
- Available for all systems that have adopted IEC standard

Entrance Dose

- DICOM tags:
 - Entrance Dose (0040,0302)
 - Entrance Dose in mGy (0040,8302)
- Available on systems with integrated generator
- Area Dose Product
 - DICOM tag:
 - Image and Fluoroscopy Area Dose Product (0018,115E)
 - Available on systems with integrated generator

*DICOM Correction item 1024 – 'Exposure Index Macro'

Exposure Index / Deviation Index

Advantages

- Reflects receptor dose
- Not as dependent on patient size/distribution
- Standardized metric

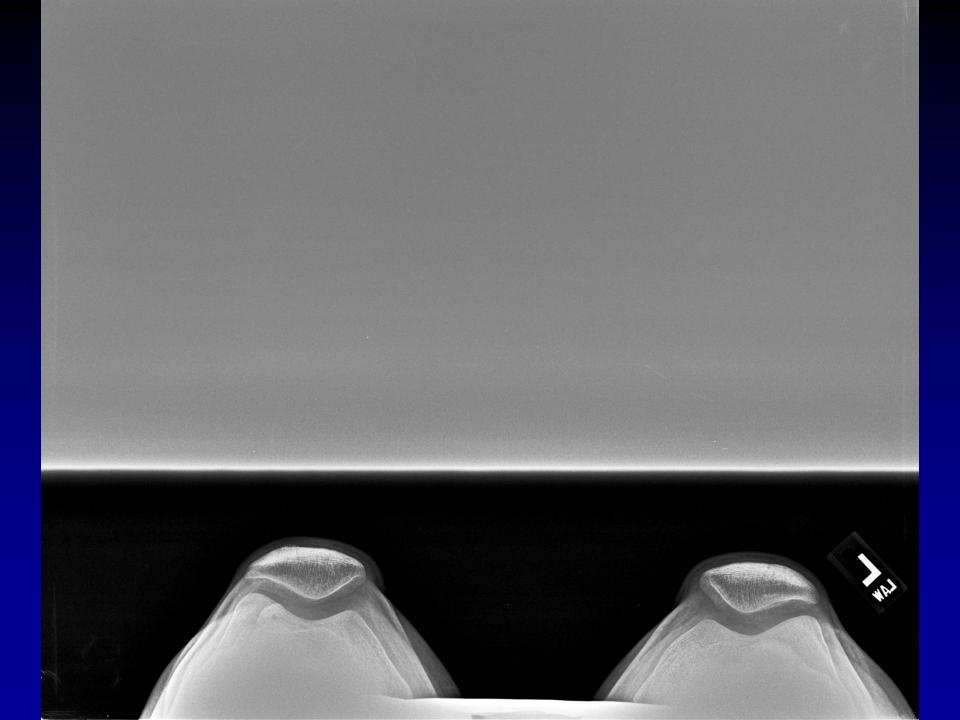
Disadvantages

- Indirectly related to patient dose
- Depends on beam quality, exam/view, as well as vendordefined VOI
- Collimation, prosthetics, etc. can affect calculated value

Establishing TEI Values

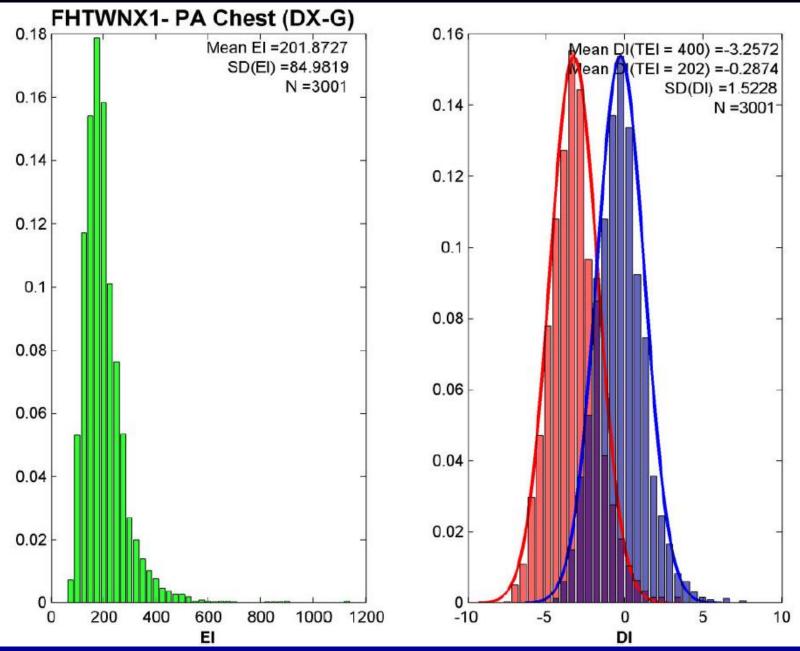
- DI is only useful if you have selected a reasonable TEI
- Some vendors will provide recommended TEI values

Establishing TEI Values


- The fewer sub-groups you have, the easier your TEI values are to implement...
 - Our Agfa CR systems currently set up with three TEI sub-groups
 - But are these right?
 - Chest (TEI 350)
 - Non-Extremity (TEI 400)
 - Extremity (TEI 1000)

Setting Action Criteria

- Shape of distribution
- Expected variation


Exposure Indices

- Remember, clinical exposure indices will vary with
 - Manufacturer (different VOIs)
 - Anatomical view
 - Collimation
 - Exposure indicator accuracy
- Manual techniques will have larger variation than photo-timed exams
- Errors in detecting collimation borders can result in inaccurate calculation of El
 - i.e. Merchant view for knees

EI - Patterns

- Typically, 95% within +/- 2 DI
- SD in El increases when manual techniques are used
- Log-normal distribution of El
- Normal distribution of DI
 - SD in DI is independent of TEI
- Guidelines yet to be published
- Questions still to be answered:
 - What is a typical (acceptable) level of variation in the EI and DI
 - Are recommended TEI values optimized?

Hulme et al, A Method for Deriving Exam-Specific Target Exposure Indices (TEI) in Computed Radiography as a Function of a Reference TEI, TU-A-116-4

TG-116 Recommendations

Table 2. Exposure Indicator DI Control Limits for Clinical Images

DI	Range Action
>+3.0	Excessive patient radiation exposure Repeat only if relevant anatomy is clipped or "burned out" Require immediate management follow-up.
+1 to +3.0	Overexposure: Repeat only if relevant anatomy is clipped or "burned out"
-0.5 to +0.5	Target range
Less than -1.0	Underexposed: Consult radiologist for repeat
Less than -3.0	Repeat

Data Collection

Multiple Options..... (TG-151)

- Paper (single site)
- Modality Performed Procedure Step (MPPS report)
- RIS extract and archive data (DICOM RDSR or MPPS)
- Send images to a separate server and strip data

Data Collection

Multiple Options..... (TG-151)

- Export data from workstation
 - Easiest option but not always packaged in a manner useful to the technologist
 - Need the option to export data in both formats
 - xml or csv
 - SIMPLE report for routine QC
 - Accidental or intentional deletion of data can occur (i.e. during software upgrade by service engineer)

Main Menu			Scre	en shot courtes Agfa Health(
Monitoring & Management Queue Management Delete Exam Lock Sessions Quality Assurance Read B Initialize Cassette View All Image Attributes		Export Umport Export Export Export Servio	Repeat / Reject Statistics Dose Monitoring Statistics Etmages Technical Images (Images Automation : No CDs or DVDs waiting for 8 & Configuration Tool		Image Overview No patient has been selected. Please select a patient Export Dose Monitoring
Dose Monitoring Queue Management Archive queues MOCRUP (Running) MIPPS queues Printor queues	Name: Description: Status: Active Jobs: Please select a queue.	About	Type : Device : Ned Jobs : View: <mark>Active and Failed jobs</mark>	Hait Pesert Peroute Scheduling	Statistics
Exit NX Worklist		.og Off Examination	Delois Ex Help Editing	scute Now	Desktop Main Menu

TEI vs. Exam Group

		Weighted	Standard					Weighted	
		Average*:	Error:	DI _{ref,k}	K _{ref,k}	TEIk	TEIk	Average:	95% CI
Exam Group (k)	N _k	DI _{ref,k}	$\Delta DI_{ref,k}$	Sub-Group	Sub-Group	(TEI _{ref} = 400)	(TEI _{ref} = 350)	SD(DI _{ref,k})	(±DI)
Chest	29078	-1.70	0.01	-2	0.6	252	221	0.79	1.6
Abdomen	3094	-1.30	0.03	-1	0.8	318	278	0.96	1.9
Abdomen GU	548	-1.24	0.03	-1	0.8	318	278	0.81	1.6
Mandible & TMJ	145	-0.76	0.07	-1	0.8	318	278	1.21	2.4
Nasal & Orbits	164	-0.63	0.08	-1	0.8	318	278	1.78	3.5
Spine	270	-0.51	0.05	0	1.0	400	350	2.26	4.4
C-Spine	7558	-0.37	0.01	0	1.0	400	350	1.01	2.0
Abdomen GI	536	-0.05	0.08	0	1.0	400	350	1.58	3.1
Full Leg / Full Spine	2863	0.20	0.01	0	1.0	400	350	1.78	3.5
T-Spine	1792	0.27	0.02	0	1.0	400	350	1.07	2.1
Shoulder	11367	0.38	0.01	0	1.0	400	350	0.95	1.9
Femur Knee Leg	27529	0.59	0.02	1	1.3	504	441	1.02	2.0
Skull, Sinus & Facial	465	0.89	0.06	1	1.3	504	441	0.98	1.9
L/S Spine	13172	0.94	0.02	1	1.3	504	441	0.82	1.6
Pelvis	60	1.05	0.24	1	1.3	504	441	1.87	3.7
Pelvis & Hip	10910	1.07	0.01	1	1.3	504	441	0.88	1.7
Lower Extremity	1124	2.08	0.03	2	1.6	634	555	2.68	5.3
Ankle & Foot	20519	3.26	0.01	3	2.0	798	698	0.83	1.6
Humerus, Elbow & Forearm	4400	4.10	0.03	4	2.5	1005	879	0.83	1.6
Hand & Wrist	11345	4.35	0.01	4	2.5	1005	879	0.75	1.5
Upper Extremity	680	4.43	0.08	4	2.5	1005	879	2.08	4.1
*Assuming an initial TEI of 400 f	for all exam	tags							

*Assuming an initial TEI of 400 for all exam tags

Hulme et al, A Method for Deriving Exam-Specific Target Exposure Indices (TEI) in Computed Radiography as a Function of a Reference TEI, TU-A-116-4

The Questions to Ask!!

...ideally at acceptance ;)

- How to access the raw DICOM image?
- If no access to raw, how to neutralize image processing?
- How to export the DICOM image (ROI tools are not always available on the workstation!!)?
- How to fix the VOI for El calculation to the central 10% of the image?
- Is there automated Reject Analysis? How do you export the report?
- How to export dose monitoring statistics?
- Is there documentation regarding target metric and tolerances for AEC calibration?

References

- AAPM Report No. 93, Acceptance Testing and Quality Control of Photostimulable Storage Phosphor Imaging Systems (2006).
- AAPM Report No. 116, Exposure Indicator for Digital Radiography, AAPM Report No. 116 (2009).
- ACR Practice Guideline for Diagnostic Reference Levels in Medical X-Ray Imaging. (Revised 2008, Resolution 3).
- Akinlade et al. Survey of dose area product received by patients undergoing common radiological examination in four centers in Nigeria, J. of Applied Med Phys Vol. 13, No. 4 (2012), 188-196.
- Agfa's Auto QC2 TM: Second-generation Quality Control for Computed Radiography Systems, White Paper (10/30/2006)
- Christodoulou et al., Phototimer setup for CR imaging, Med. Phys. 27 (12) (2000).
- Cohen et al. 'Quality assurance: using the exposure index and the deviation index to monitor radiation exposure for portable chest radiographs in neonates', Pediatr Radiol (2011) 41:592-601
- Doyle et al., Optimising automatic exposure control in computed radiography and the impact on patient dose, Rad. Protection Dosimetry Vol 114 (2005), 236-239
- Doyle and Martin, Calibrating automatic exposure control devices for digital radiography, Phys. Med. Biol. 51 (2006), 5475-5485.
- Gray et al., Reference Values for Diagnostic Radiology: Application and Impact, Radiology Vol 235 (2) (2005), 354-358.
- Hart et al., The UK National Patient Dose Database: now and in the future, Br. J. of Radiol. 76 (2003), 361-65.
- Hart et al., UK population dose from medical X-ray examinations, Eur. J. of Radiol 50 (2004), 285-91
- Hulme et al, TU-A-116-4 : A Method for Deriving Exam-Specific Target Exposure Indices (TEI) in Computed Radiography as a Function of a Reference TEI, Med. Phys 40, 426 (2013).
- IEC 6294-1, Medical electrical equipment Exposure index of digital X-ray imaging systems Part 1: Definitions and requirements for general radiography (2008).
- Jones et al. 'One Year's Results from a Server-Based System for Performing Reject Analysis and Exposure Analysis in Computed Radiography', J Digital Imaging, Vol 24. No 2 (2011), 243-255.
- Martin CJ, The importance of radiation quality for optimisation in radiology, Biomed Imaging and Interv 3(2):e38 (2007).
- Marshall NW, An examination of automatic exposure control regimes for two digital radiography systems, Phys. Med. Biol. 45 (2009), 4645-4670.
- Meghzifene et al., Dosimetry in diagnostic radiology, Eur. J. of Radiol 76 (2010), 11-14.
- Nationwide Evaluation of X-ray Trends (NEXT): Tabulation and Graphical Summary of 2002 Abdomen/Lumbosacral Spine Survey. CRCPD Publication E-06-2b (2006).
- Nationwide Evaluation of X-ray Trends (NEXT) : Tabulation and Graphical Summary of 2001 Survey of Adult Chest Radiography. CRCPD Publication E-05-2 (2005).
- Nationwide Evaluation of X-ray Trends (NEXT) : Tabulation and Graphical Summary of 1998 Pediatric Chest Survey. CRCPD Publication E-04-5 (2004).
- NCRP Report No. 172, Reference levels and achievable doses in medical and dental imaging: recommendations for the United States. (2012).

Cleveland Clinic

Every life deserves world class care.