

Medical Physics 2.0: A Vision for Effective, Meaningful, and Value-Based Imaging Physics in the Clinical Environment

Ehsan Samei, PhD

Duke University

Medical Physics 2.0?

- A bold vision for an existential transition of clinical imaging physics
- ["] 12 hrs didactic lectures on CT, MRI, NM, Fluoroscopy, Rad, Mammo, US, IT
 - **RSNA 2013**
 - . RSNA 2014
 - . RSNA 2015
 - . AAPM 2014
 - . AAPM 2015
 - . Clinical Imaging Physics. Wiley and Sons, 2015

Overarching presuppositions

- ["] Imaging should render relevant state of health/disease accurately and precisely enough so that it can lead to definitive clinical decisions
- "Images should be more reflective of the state of the patient than the technique used

Reality checks

- Clinical activities are heterogeneous/compounded/complex operations
- " Increased scrutiny
- ["] Limited resources
- "How imaging physics can add value in the quality of imaging operation?

4 Key formative questions

1. Where is imaging in medicine enterprise?

- Transformative technology
- " The "face" of modern medicine

2. Where medical imaging is going?

- *Evidence-based medicine*Practice informed by science
- " Precision medicine
 - . Quantification and personalization of care
- " Value-based medicine

. Scrutiny on safety, performance, consistency, stewardship, ethics

Comparative effectiveness and meaningful use
 Enhanced focus on actual utility

3. What has been the role of imaging physics in medicine?

- % Remember Roentgen!
- Medical physics is the foundational discipline behind Radiology and Radiation Oncology

4. What has been the clinical role of imaging physics?

- ["] Ensuing quality and safety of clinical imaging systems
- We have done a GREAT job using engineering and physics concepts to
 - . Design systems with superior performance
 - . Ensure minimum intrinsic performance
 - . Claim compliance
- ″ But...

Imaging physics enterprise

Imaging physics enterprise

Why 1.0 is not enough

- Not translatable, historically, to clinical care, mostly equipment-focused
 Relevance?
- " Outdated science and technology
 - . Compliance lags behind clinical needs and innovations

Why 1.0 is not enough

- Clinical performance?
- " Optimization of use?
- " Consistency of quality?
- " Changing technology?
- " Value-based healthcare?

1.0 to 2.0

" Clinical imaging physics extending from

compliance	to	excellence
intrinsic	to	extrinsic
Equipment	to	operation
Specifications	to	performance
Quality	to	consistency
Assumption	to	actual utility
Promises	to	implementation

Inspiring practices of Medical Physics 2.0

- 1. Science: Practices that are scientifically-informed by latest findings and methods
- 2. Relevance: Objectives that are oriented towards the actual clinical practice
- **3.** Stewardship: Approaches that are pragmatic in the meaningful and efficient use of resources
- 4. Integration: Solutions that are comprehensive and holistic in view of clinical operation
- 5. Empowerment: Education enabling others to be their best in their domain of care

Clinical role of medical physics

<u>Applying the science of imaging physics</u> <u>to ensure quality, safety,</u> <u>consistency, and optimum utilization</u> <u>in the clinical practice of medical imaging</u>

Ensuring quality, safety, consistency, optimality

Ensuring quality, safety, consistency, optimality

Prospective performance assessment Quality by inference

Prospective protocol definition Quality by prescription

Retrospective quality assessment Quality by outcome

Ensuring quality, safety, consistency, optimality

Prospective performance assessment Quality by inference

Devising better metrics Automated characterization

Prospective protocol definition Quality by prescription

Retrospective quality assessment Quality by outcome

Nuclear Medicine non-uniformity

Crosshatched artifact pattern (system has square PMT's)

Nuclear Medicine non-uniformity

Integral Uniformity =
$$\frac{N_{\text{max}} - N_{\text{min}}}{N_{\text{max}} + N_{\text{min}}} \times 100\%$$

2.81%

Nelson JS, et al, JNM, 2014

Structured Noise Index (SNI)

Integral Uniformity vs SNI

SNI Tracking and Analytics

Scanners can send QC data to physics server

SNI Tracking and Analytics

Scanners can send QC data to physics server

Improved consistency across NM fleet

SNI Tracking and Analytics

- ["] Improved consistency across systems
- Decreased the time technologists and physicists spent analyzing QC
- Successfully alerted staff to issues which would have been overlooked
- " Expedited communication between clinical staff, physicist, and clinical engineers

What is image quality?

ICRU Report 54, 1996 "Any general definition of <u>image quality</u> must address the <u>effectiveness</u> with which the image can be used for its <u>intended task</u>."

Parameters that affect taskbased image quality

- 1. Contrast
- 2. Lesion size
- 3. Lesion shape
- 4. Lesion edge
- 5. Resolution
- 6. Viewing distance
- 7. Display
- 8. Noise magnitude
- 9. Noise texture
- 10. Operator noise

Feature of interest

Image details

Distractors

Parameters that affect taskbased image quality CNR

1.	Contrast		1.	Contrast
2.	Lesion size	Feature of	2.	
3.	Lesion shape	interest	3.	Lesion shape
4.	Lesion edge		4.	
5.	Resolution	Imaga	5.	Resolution
6.	Viewing distance	dotails	6.	Viewing distance
7.	Display	uetans	7.	Display
8.	Noise magnitude		8.	Noise magnitude
9.	Noise texture	Distractors		
10.	Operator noise			

Iterative Reconstruction

FBP Reconstruction

Noise texture?

FBP

Images courtesy of Dr de Mey and Dr Niesoer, of Drusser, beigium

Noise Power Spectrum

Resolution and noise, eg 1

Comparable resolution

Lower noise but different texture

Resolution and noise, eg 2

Higher resolution

Lower noise but different texture

Task-based quality index

Resolution and contrast transfer

Attributes of image feature of interest

Image noise magnitude and texture

$$\left(d_{NPWE}^{'}\right)^{2} = \frac{\left[\iint MTF^{2}(u,v)W_{Task}^{2}(u,v)E^{2}(u,v)dudv\right]^{2}}{\iint MTF^{2}(u,v)W_{Task}^{2}(u,v)NPS(u,v)E^{4}(u,v) + MTF^{2}(u,v)W_{Task}^{2}(u,v)N_{i}dudv}$$

Richard, and E. Samei, Quantitative breast tomosynthesis: from detectability to estimability. Med Phys, 37(12), 6157-65 (2010). Chen et al., Relevance of MTF and NPS in quantitative CT: towards developing a predictable model of quantitative... SPIE2012

Task-based measurements

Mercury Phantom 3.0

- Diameters matching population cohorts
- ["] Depths consistent with cone angles
- ["] Designed for size, AEC, and d' evaluations

Design: Resolution, HU, noise

- Representation of abnormality-relevant HUs
- Sizes large enough for resolution sampling
- Maximum margin for individual assessment
- Iso-radius resolution properties
- Matching uniform section for noise assessment

Wilson et al, MedPhys 2012

imQuest

(image quality evaluation software)

HU, Contrast, Noise, CNR, MTF, NPS, and d' per patient size, mA modulation profile

Wilson et al, MedPhys 2012

Detectability index across systems

Intra system variability: 1-4% Inter system variability: 6%

Winslow et al, AAPM, 2014

Image quality in the presence of anatomical heterogeneity

48

Ensuring quality, safety, consistency, optimality

Prospective performance assessment Quality by inference

Prospective protocol definition Quality by prescription

Retrospective quality assessment Quality by outcome

Optimization of kVp-recon

Patient size?

Optimization of dose per size

Optimization for quantification Quantitative CT volumetry

PRC: Relative difference between any two repeated quantifications of a nodule with 95% confidence

Solomon, Samei, Med Phys, 2012

Texture similarity – matched recons

GE	Siemens	Minimum RMSD (mm ²)	Minimum PFD (mm ⁻ ¹)			
SOFT	B35f	0.01	0.00			
STANDARD	B43f	0.01	0.00			
CHEST	B41f	0.01	0.01			
DETAIL	B46f	0.04	0.01			
LUNG	B80f	0.03	0.00			
BONE	B75f	0.10	0.13			
BONE+	B75f	0.09	0.12			
EDGE	B75f	0.18	0.41			

Solomon, Samei, Med Phys, 2012

Texture similarity – matched recons

Texture similarity – matched recons

Resolution/noise across recons

Resolution/noise across recons

Ensuring quality, safety, consistency, optimality

Prospective performance assessment Quality by inference

Prospective protocol definition Quality by prescription

Retrospective quality assessment Quality by outcome

Dose monitoring components

- A. Access: Connection and collection of doserelevant data
- **B. Integrity**: Data quality and accuracy
- C. Metrology: Meaningful quantities to monitor
- **D. Analytics**: From data to knowledge
- E. Informatics: Dose monitoring as a secure, integrated solution

Dose analytics

- 1. Benchmarking institution against national DRLs
- 2. Defining protocol- and size-specific DRLs
- 3. Identifying outliers
- 4. Ascertaining trends over time
- 5. Ascertaining inter-system variability
- 6. Tracking protocol discrepancy
- 7. Investigating individual doses
- 8. Improving operational consistency

Frush, Samei, Medscape Radiology, in print 2015

Benchmarking institution against national DRLs

max mA							700			
DFOV (cm)							per patient	per patient		
Iterative Reconstruction							40%	40%		
Recon Algorithm						Standard	Standard			
Recon Mode							Full	Plus		
AUTO APPS DMPR							N/A	Yes/Coronal		
CTDI Patient Width 25cm	Upper Guideline						9			
CTDI Patient Width 30cm	Target						6			
CTDI Patient Width 35cm	Lower Guideline					_	3			
CTDI Patient Width 40cm	Target Lower Guideline						17			

Notes

r/o abcess always MD check If abcess radiologist to stipulate if oral is needed

Contrast Contraindications:

Chest exposures by operator and Clinic

CR

DR

CT Table Height

Clinical image quality?

Clinical image quality monitoring

Lin et al, Med Phys 2012 Samei et al, Med Phys 2014

Image quality reference levels – lung noise

Lung detail

Overall operational consistency - CT

Christianson et al, AAPM, 2014

Protocol Report Cards

			STANDARD CHEST 5 mm						
					n = 4229 annually				
			Scan parameter	Definition	Flash	, 750 HD	VCT	LS 16	
		_ _	Protocol name	23_ST ANDARD_CHEST_WIT HOUT_IV	22_FLASH_PE_CHEST	5.1STANDARD CHEST	5.1STANDARD CHEST	5.1STANDARD CHEST	
Protocol Definition		ō	Scan type	Helical	Helical	Helical	Helical	Helical	
	free encounter	Ę.	Rotation time	0.5	0.285	0.4	0.4	0.5	
	Protocol name 23_574		Pilicii Tabla apoad	0.0	3	1375	1.375	1.375	
	Scan type Rotation time	Defir	Beam width	38.4	38.4	40	40	20	
	Pitch Table speed		kVp	120	120	120	120	120	
	Beam width		Slice thickness	5	5	5	5	5	
	Slice thickness	_	Auto mA	Ön	Ön	Ön	Ön	Ön	
	Auto mA mA/NI/mAsref	Ö	mA/NI/mAsref	150	150	19.2	16	16	
	SFOV Kernel	ŏ	SFOV	Wedge_3	Wedge_2	Body	Body	Body	
	Iterative Level	Iterative Level DI	Kernel	B31f	B31f	Standard	Standard	Standard	
	M atches e-protocol 6of STANDARD CHEST exam:		Iterative Level	FBP	FBP	A SiR 30%	FBP	FBP	
Image Quality (Prospective)		<u>ц</u>	Matches e-protocol	Yes	No	Yes	Yes	Yes	
	Target (CT 750HD)	-	6 of STANDARD CHEST exami	14.3%	27.4%	47.9%	5.3%	5.2%	
	Current VCT			Kernel/IR	NPSavg	MTF50	d' (5mm)	5% Match	
	Recommended Flash		Target (CT 750HD)	STD/40%	0.261	0.45	40	N/A	
	Recommended VCT Recommended LS16	ality ive)	Current Flash	B31/0	0.293	0.412	33.2	No	
	To match noise magnitude		Current VCT	STD/0	0.3	0.43	35.6	No	
		ect 2u:	Current LS16	STD/0	0.3	0.43	35.6	No	
Radiation Dose	30 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	e O	Recommended Flash	i40/3	0.265	0.432	40.7	Yes	
		age	Recommended VCT	STD/0	0.3	0.43	35.6	No	
		(Pi	Recommended LS16	STD/0	0.3	0.43	35.6	No	
		—	To match noise magnitude of 750HD, increase ref mAs to 155						
			If STD behaves on VCT as on 750HD, , decrease VCT NI to 11.8						
			DIR 25th% 25 30 35 Patient diame	40 45 ter (cm)					
	25 1 T		30			50			
Noise (Retrospective)	20 5 0 25 30 (m) 30-35 (m) (5 %)	35-40cm 40-45cm (21%)	Definition Flash For the second	• Definition • Flash • 720 HD • VCT • LS16 • 40 45 eter (cm)					

Protocol Report Cards

Challenges on the path to MP2.0

- ["] Cultural inertia
- " Availability of effective tools
- " Availability of QA informatics
- ["] Lagging guidelines, accreditations, regulations
- ["] Lagging certification requirements
- ["] Lagging education
- *Effective model(s) of practice*

Conclusions 1

- Clinical Imaging physics is a severely untapped resource insufficiently integrated into the patient care process.
- We need a new paradigm to define and enact how the clinical physicist can engage as an active, effective, and integral member of the clinical team.

Medical Physics 2.0

- An existential transition of clinical physics in face of the new realities of value-based, evidence-based, personalized medicine.
- Clinical imaging physics expanding beyond insular models of inspection and acceptance testing, oriented toward compliance, towards

. Team-based models of operational engagement

- . Prospective assurance of effective use
- . Retrospective evaluation of clinical performance

Conclusions 3

- Skilled expertise in imaging physics is needed to understand the nuances of modern imaging equipment to
 - . Ensure quality (with relevant metrology)
 - . Ensure consistency
 - . Define and ensure conformance
 - . Inform effective use, at outset and continually
 - . Optimize quality and safety
 - . Monitor and ensure their continued performance
 - . Enable quantitative and personlized utilization