Don't Electrocute Me!: Common Misconceptions in Imaging and Radiation Safety (and What to Do About Them)

> Rebecca Milman Marsh, Ph.D. University of Colorado Department of Radiology

Who in the Facility Works With/Around Radiation?

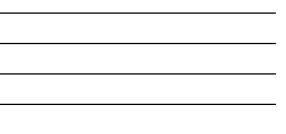
- RadiologistsRadiation Oncologists
- .
- Technologists .
- Non-radiology physicians Anesthesiologists
- . OB/Gyn

•

- Cardiologists
- Pain Management

Nursing staff in multiple departments

- Surgeons
 ER physicians


Staff should understand what the risks are and what the risks are not

- Make well-informed choices concerning their own well-being
- · Make well-informed choices about patients' medical care
- · Communicate risks (or lack thereof) to patients
 - · Allows patients to make well-informed decisions about their own health care
 - · Allows patients to make well-informed decisions about their own health care

#1 "My personnel dosimeter will stop the radiation."

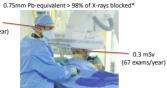
1a "These latex gloves will protect me from the radiation"


Understand what protects you from radiation and what doesn't.

#2 "If one lead apron is good, then two must be better."

* Pasciak, et al. Med Phys 2015

#2 "If one lead apron is good, then two must be better."



#2a Give me lead underwear!!

- Recent data (IAEA 2011) suggest a lens dose threshold of 500 mSv (thought to be cumulative)
- NCRP recommends a maximum eye dose of 20 mSv/year with no single year exceeding 50 mSv

Dose to the lens per exam: 0.3 mSv (.01 mSv - 0.55 mSv) (NCRP 168)

0.012 mSv (1667 exams/year)

#2a Give me lead underwear!!

#2a Give me lead underwear!!

One study showed that using a leaded hat reduced dose to the temple by 72%*

Threshold for effects to the brain from acute doses of radiation: $\mathbf{300}\ \mathbf{mSv}$

ESE * tissue weighting factor for the brain * skull transmission ESE * 0.01 * 0.66 = 0.66% of the ESE

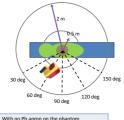
	ESE per case (uGy)	Effective Dose, considering brain sensitivity & skull attenuation (uSv)	# of cases it would take to reach 300 mSv	Cases per year (45 year career)
without hat	200	1.3	> 200,000	> 5,000
with hat	56	0.37	> 800,000	> 17,000

Reeves, Society of Cardiovascular Angiography and Interventions (2014)

2b "Placing a lead apron on the patient will reduce operator dose."

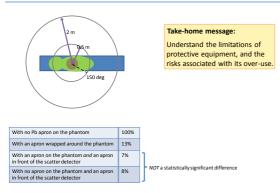
Recent studies:

* Placing a lead shield on the patient, and using a nonlead cap, reduced operator dose by 75% (2014 College of Cardiology conference)


* Placing a lead shield on the patient decreased operator dose (under the operator's lead apron) by almost 70% for trans-radial interventions (Masollan et al., Catheterization and Cardiovascular Interventions, December 2014)

Decreased the dose per procedure from 0.53 μSv to 0.17 μSv

(AK of about 1100 mGy for each procedure)


2b "Placing a lead apron on the patient will reduce operator dose."

with no ro apion on the phantom
With an apron wrapped around the phantom
With an apron on the phantom and an apron in front of the scatter detector
With no apron on the phantom and an apron in front of the scatter detector

2b "Placing a lead apron on the patient will reduce operator dose."

3 "I would never let my pregnant wife get a head CT exam."

Lo, et al., International Journal of Radiology (2014)

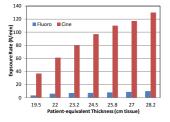
Radiation Exposure to	Increased Probability of Fetal	Probability of Developing Childhood Cancer					
the Fetus	Malformation	1 st	2 nd or 3 rd				
	or Miscarriage	Trimester	trimester				
None	None	0.07%	0.07%				
10 mGy	None	0.25%	0.12%				
50 mGy None 0.88% 0.3%							
Wagner, Lester, & Saldana, "Exposure of the Pregnant Patient to Diagnostic Radiations," 1997.							

Exam	Typical Fetal Dose				
CT Scout	< 0.5 mSv				
Extremity	< 0.01 mSv				
Chest (including for PE)	0.2 mSv				
Abdomen	4 mSv				
Abdomen & Pelvis	25 mSv				
Head: Not Measurable					
McCollough, et al., Radiographics 2007; 27:909-18					

Exam	Typical Dose to the Fetus	100mSv		< 1%
Mammography	•	1001101		< 170
Mammogram (both breasts)	< 0.001 mSv			
DEXA				
Dual X-ray Absorptiometry	< 0.001 mSv			
X-ray				
Cervical spine, thoracic spine, extremity, or chest	< 0.003 mSv	50mSv		< 0.5 %
Lumbar spine	1 mSv			
Abdomen or pelvis	2 mSv			
Fluoroscopy		10mSv		< 0.2%
Small-bowel study	7 mSv			< 0.270
Double-contrast barium enema study	7 mSv	0mSv		< 0.1%
ст				
Head, Neck, Extremity, or Chest	< 1 mSv	Radiation		Risk of
Abdomen CT	4 mSv	Dose to the Fet	us Cl	hildhood Canc
Abdomen + Pelvis CT	25 mSv			

#3 "I would never let my pregnant wife get a head CT exam."

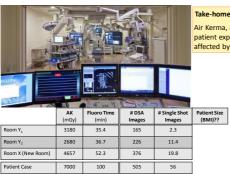
#3 "I would never let my pregnant wife get a head CT exam."


Information for Physicians	Discussi	ing Redistio	n Hisk with Pregnant Patients	

- .

- . . of fetal maillormation, and that the estin
- Suggested (key/harase to Use When Discussing Radiation Risk with Pregnant Patients
 "We assess the appropriateness of every exam for every patient and have determined that this exam is will help
 provide you with the best care possible."
 "It is much more likely that you will benefit from the information provided by this exam than you or your child
 will experience anyharm from the exam."
 "There is a risk associated with not having a medically-indicated CT exam."

#4 "Fluoro and cine mode have the same dose rate."


Studies have found that the dose rate for cine acquisitions is 10 to 13 times higher than for flouro modes*

* Cusma et al., JAC Cardiology 1999.

Take-home message:

Understand which exams truly pose a risk to the patient and/or the fetus.

#4a "Room X always results in higher doses than Room Y"

Take-home message: Air Kerma, and hence patient exposure, is affected by many factors.

5 "Radiation was spilling out of the room." "I saw a fetus with radiation burns."

Take-home message: A lack of information can cause rumors to get out of hand very quickly.

Vascular surgeons OR nurses Anesthesiologists OB staff NICU staff

•

#6 CTDI

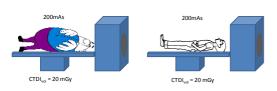
"But do you mean the emitted $\mathrm{CTDI}_{\mathrm{vol}}$ or the absorbed $\mathrm{CTDI}_{\mathrm{vol}}$?"

"The $\ensuremath{\mathsf{CTDI}_{\mathsf{vol}}}\xspace$ for an adult abdomen exam should never be above 25 mGy."

#6 CTDIvol

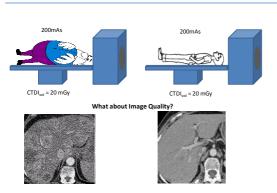
"The $\mathrm{CTDI}_{\mathrm{vol}}$ for an adult abdomen exam should never be above 25 mGy."

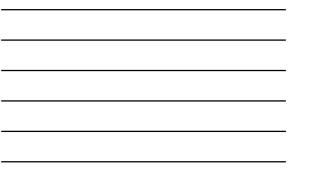
ACR CT Accreditation Dose Pass/Fail Criteria and Reference Levels						
Pass/Fail Criteria Referen						
Examination	CTDI _{vol} (mGy)	CTDI _{vol} (mGy)				
Adult Head	80	75				
Adult Abdomen	30	25				
Pediatric Head (1 year old)	40	35				
Dedictric Abdomon (40 E0 lb)	20	16				

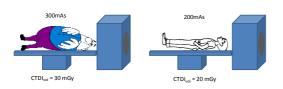

#6 CTDIvol

Total mAs 6442	Total DLP 224	0 mGy	cm					
	Scan		mAs / ref.	CTDIvol* mGy	DLP mGycm	TI s	cSL mm	
Patient Position F-	SP							
Topogram Contrast		100	35 mA	0.09 L		6.3	0.6	
CHEST/ABD ABD/PEL		140 140	261 /133 233 /133	25.74 L 22.95 L	1136 1099	0.5 0.5	0.6 0.6	
			*: L = 32cm,	S = 16cm				
body					CTDI _{vol} : scan ler		mGy	
head	1			$\langle $	22.95 m	1Gy * 4		ı 1099 mGy*cm
CTDI, Dose to a P		c	DLP TDI _{vol} * Scan L	ength				

#6 CTDIvol




#6 CTDIvol


Which patient received a higher dose?

#6 CTDIvol

#6 CTDIvol

6a "We want to have the lowest CT dose in town"

What are the key goals in diagnostic radiology?

To provide images that allow physicians to make accurate diagnoses, putting the patient at **as little risk as possible** to achieve this goal.

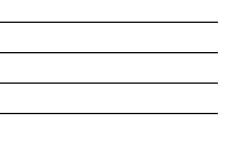
6a "We want to have the lowest CT dose in town"

What are the key goals in diagnostic radiology?

To provide images that allow physicians to make accurate diagnoses, putting the patient at **as little risk as possible** to achieve this goal.

6a "We want to have the lowest CT dose in town"

Take-home message: Understanding the role and limitations of dose indices is vitally important.


Exam	Site median CTDI _{vol} (mGy)	Compared to Other Sites
CT CHEST WO IVCON	10	25th-50th Percentile
CT Pelvis WO IVCON	30	50 th – 75 th percentile
CT ABDOMEN	8	< 25 th Percentile
CT HEAD	75	> 75 th Percentile

Where do we want to be?

#7 "I mag up to collimate."

Effects of Magnification					
FOV (cm)	Relative Dose Rate of Primary Beam (Meas./Theory)	Relative DAP Rate (Meas.)	FOV (cm)	Relative Dose Rate of Primary Beam (Meas./Theory)	Relative DAP Rate (Meas.)
12″	1/1	1	12″	1/1	1
9″	1.13 / <mark>1.78</mark>	0.64	9″	1.64 / <mark>1.78</mark>	0.92
7″	1.38 / <mark>2.94</mark>	0.47	6″	2.78 / 4	0.70

11

#7 "I mag up to collimate."

	Effects of Collimation		
Take-home message: Collimating is preferable to magging up, when possible.	FOV (cm)	Relative Dose Rate of Primary Beam (Meas.)	Relative DAP Rate (Meas.)
up, when possible.	12"	1	1
	6.2″	1	0.27

Effects of Magnification						
FOV (cm)	Relative Dose Rate of Primary Beam (Meas./Theory)	Relative DAP Rate (Meas.)	FOV (cm)	Relative Dose Rate of Primary Beam (Meas./Theory)	Relative DAP Rate (Meas.)	
12″	1/1	1	12″	1/1	1	
9″	1.13 / <mark>1.78</mark>	0.64	9″	1.64 / <mark>1.78</mark>	0.92	
7″	1.38 / <mark>2.94</mark>	0.47	6″	2.78 / 4	0.70	

#8 "Since you're not scanning a patient, can I take this tire iron into the MR scanner room?"

#8 "Since you're not scanning a patient, can I take this tire iron into the MR scanner room?"

#8 "Since you're not scanning a patient, can I take this tire iron into the MR scanner room?"

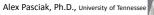
#8a "How much dose will my patient get from his MRI?"

9 "Your risk of developing cancer from this imaging exam is 2%"

"1 in 16 women will develop lung cancer in their lifetime" "You have a 1 in 16 chance of developing lung cancer"

Models of radiation risk were never meant to be applied to an individual

Summary


- Tell them not to worry about it and that you know it's okay (this rarely works)
- Show them physics test results (this never works)
- Show them complete data (including number of acquisitions and/or patient size)
- · Give them specific examples
- Compare these data with similar studies in the literature (when possible)
- "Trickle up" theory: Inform the technologists, nursing staff, and residents
- Try to predict when mis-understandings may occur (new rooms, equipment, etc.)
- Maintain a presence in the clinic
- Be patient

Acknowledgements

Mike Silosky, M.S., University of Colorado

Peter Lowry, M.D., University of Colorado

