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Figur e 1. Prostate pat ient who had five CT scans before t reatment . Bladder and

rectum filling differs from day to day and hence the locat ion and shape of the CTV.

constant in t ime and that the geometry in one fract ion is uncorrelated to the geometry

in the previous fract ion. This meens we do not consider t ime trends during treatment,

e.g. weight loss or radiat ion effects on the tumor and healthy t issues.

2.2. The model

To gain some basic understanding of inverse planning based on probability distribut ions

of pat ient geometries we consider a model of idealised geometry that originates from

rotat ion therapy with high energy photons. We consider the planar irradiat ion of a

circularly shaped CTV of radius RT with a rotat ing gantry. The CTV is surrounded by

a healthy t issue of radius R (see Fig. 2).

Organ movements are simulated by rigid translat ions of the ent ire body for simplicity.

This allows us to track each point of the body during movement and to calculate the

cumulat ive dose in each point . The geometry of the pat ient can then be parameterised

by a single vector ∆ r = (∆ r, ∆ ϕ) denot ing the posit ion of the center of mass. In the

following text we denote vectors in two spacial dimensions by bold italic characters and

scalars by normal italic characters. For simplicity, we assume that the displacements

(∆ r, ∆ ϕ) follow a Gaussian probability dist ribut ion
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that is independent of the azimuthal angle ∆ ϕ. The dist ribut ion width σ characterises

the magnitude of mot ion. However, in sect ion 3 one could replace the normal

distribut ion by any other dist ribut ion without modificat ion of the formalism. Sect ion 4

could also be generalised to abit rary dist ribut ions but certain simplificat ions could not

be done analyt ically. In this work we do not simulate rotat ions of the pat ient.
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Including motion and uncertainty 

Assume a discrete set of errors can occur 

dk =Dkx

Delivered dose depends on the error scenario k 

Minimize expected value of objective function 

minimize pk
k

å f d k( )

Assign probabilities to errors: pk

Including motion and uncertainty 

Quadratic objective function 
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Systematic errors 

Systematic errors   
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(Setup errors or internal deformation) 
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Systematic errors 

• Gaussian pk  

• σ = 10 

• cutoff at ± 2σ 

• 40 scenarios 
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Ref: Löf 1995, Inv Prob 
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• reproduces a 
PTV-like plan 

• may yield a 
smooth falloff  

See also: Sir 2006, PMB 

Systematic errors 

• Automation: no explicit PTV definition necessary 

• Could optimally balance target coverage and OAR sparing 

Benefit: 

minimize pk
k

å TCP d k( )

subject to pk
k

å NTCP d k( ) £ 0.05

Stochastic programming natural with TCP/NTCP 

marginalization of a TCP 

model over the uncertain 

dose distribution 
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Motion 

Respiratory motion 

Respiratory motion 

exhale inhale 

• tumor size = 20 

• amplitude = 20 

ITV plan 

Respiratory motion 

Can normal tissue dose be reduced? 

Tumor accumulates dose in different breathing phases  

Idea:  

• reduce dose to regions where the tumor is rarely  

• deliver higher dose to regions always occupied by tumor 

d = wiD
ix

i=1

n

å wi
i=1

n

å =1
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Respiratory motion 

4D optimization 

wi 

dose peak where 
there is tumor most 
of the time 

• Assume predictable 
breathing motion 

dose reduction at 
the edge of ITV 

Respiratory motion 

Problem: dose will degrade if breathing pattern varies 

d k = wi
kDix

i=1

n

å

wi
k

i=1

n

å =1

Stochastic programming: 

Allow different breathing patterns wk with probability pk 

exhale inhale 

Respiratory motion 

• larger uncertainty in w 
gradually yields more 
ITV-like plans 

• special case wi
k = 1  

models systematic 
error 

Account for uncertainty in breathing pattern 

Ref: McQuaid 2011 
AAPM summerschool 
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Respiratory motion 

Dose delivered to moving tissue (nominal trajectory) 

Realistic cases 

Respiratory motion 

Dose on exhale 

96 A pplicat ion t o lung t umors
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Figure 5.5: 3D dist ribut ions for treatment plans opt imized for different irradiat ion t imes:

(a-c) opt imized for compensator based IMRT delivery (d-f) opt imized for Step-and-Shoot

IMRT (g-i) opt imizat ion of the expectat ion value of the dose (infinite treatment t ime) (j-l)

opt imized for an infinitesimal short irradiat ion t ime. The three columns show: (a,d,g,j)

the stat ic dose distribut ion, (b,e,h,k) the expectat ion value of the dose and (c,f,i,l) the

standard deviat ion for an infinitesimal irradiat ion t ime. The color code legends in figures

5.8c,d apply.
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IMRT (g-i) opt imizat ion of the expectat ion value of the dose (infinite treatment t ime) (j-l)
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the stat ic dose distribut ion, (b,e,h,k) the expectat ion value of the dose and (c,f,i,l) the

standard deviat ion for an infinitesimal irradiat ion t ime. The color code legends in figures

5.8c,d apply.

Accumulated dose 

Assume predictable motion 
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Respiratory motion 

No uncertainty 
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Motion modeled as 
systematic error 
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medium motion 
uncertainty 

Ref: Heath 2009 Med Phys 

Respiratory motion 

• 4D optimization yields dose horns  

 Normal tissue dose reduction compared to PTV 

Benefit: 

• Stochastic programming can account for breathing variations 

 Find the balance between robustness and 
normal tissue sparing through horns  

Proton therapy 

Range uncertainty in IMPT 
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Proton therapy 

Proton therapy 

Robustness analysis: 

nominal plan 5 mm range overshoot 

Proton therapy 

Stochastic programming: 

Assume 3 scenarios: 

• nominal scenario   p1 = 0.5 

• 5 mm range overshoot  p2 = 0.25 

• 5 mm range undershoot   p3 = 0.25 
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Sensitivity analysis 

conventional plan 

5 mm range overshoot 

generated using 
stochastic programming 

Motivation 

conventional plan generated using 
stochastic programming 

How is robustness achieved? 

Commercial implementations 

Examples: 

Proton therapy led to the first implementation of 
probabilistic / robust planning in commercial TPS  

• IMPT Pinnacle 
(implements a probabilistic approach) 

• RayStation v4.5 

(in development) 

(implements a minimax approach) 

• Hyperion (in-house TPS in Tübingen, Germany) 

(coverage probability method to account for 
positioning errors in prostate treatments) 

Before that: 

(Ref: Fredriksson 2011, Med Phys) 

(Ref: Baum 2006, R&O) 
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Raystation 4.5 

User interface 

Setup uncertainty 

Range uncertainty 

Raystation 4.5 

User can robustify important objectives 

Raystation 4.5 

Plan evaluation 

define error scenario 
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Summary 

Stochastic programming for handling uncertainty: 

• optimize expected value of the objective function 

• general purpose method applicable to many uncertainties   

Advantage over a PTV depends on type of uncertainty:  

• Automating target expansions 

(systematic positioning errors) 

• Normal tissue dose reduction through horns 

(respiratory motion) 

• Mitigate beam misalignments risks 

(IMPT) 

Status in practice 

Range and setup uncertainty in IMPT: 

• Fundamental limitations of the PTV concept 

• led to the first commercial implementations   

Respiratory motion 

• Dose accumulation relies on deformable registration 

• Computationally intensive 

Setup errors, inter-fraction organ motion 

• Qualitatively similar to PTV plans 

• Magnitude of the error reduced through image guidance 


