Stochastic programming methods for
handling uncertainty and motion in
IMRT planning
Jan Unkelbach

Industry collaborations: RaySearch, Philips Medical Systems

OLOGY

Content

A. Stochastic programming in IMRT planning
B. What is the advantage over a PTV approach?

1. Systematic positioning errors

Balancing target coverage and normal tissue sparing
2. Respiratory motion

Reducing normal tissue dose through ‘horns’

3. Range uncertainty in proton therapy
Breakdown of the static dose cloud approximation
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Fluence map optimization in IMRT

Minimize dose-based objective function
minimize £ (d)

subjectto d =Dx
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Including motion and uncertainty

Assume a discrete set of errors can occur
Delivered dose depends on the error scenario k
k —
d" =D"x
Assign probabilities to errors: D,

Minimize expected value of objective function
L o "
minimize apkf(d )
k
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Including motion and uncertainty

Quadratic objective function

f(d)=&(d- @) +& (a)
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Systematic errors

Systematic errors
(Setup errors or internal deformation)
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Systematic errors
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Systematic errors
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Systematic errors

Benefit:

» Automation: no explicit PTV definition necessary
» Could optimally balance target coverage and OAR sparing

Stochastic programming natural with TCP/NTCP

L ° . marginalization of a TCP
minimize Q p, TCP (d ) model over the uncertain
A dose distribution

subjectto & p;NTCP(d")£0.05

k
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Motion

Respiratory motion
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Respiratory motion
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Respiratory motion
Can normal tissue dose be reduced?
Tumor accumulates dose in different breathing phases
& &
d=awDx aw=1
i=1 i=1
Idea:

+ reduce dose to regions where the tumor is rarely

« deliver higher dose to regions always occupied by tumor
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Respiratory motion
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4D optimization
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Respiratory motion
Problem: dose will degrade if breathing pattern varies

Stochastic programming:

Allow different breathing patterns w* with probability p,

n
d* =@ w'D'x
i=1
I
aw =1
i=1 exhale inhale
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Respiratory motion

Account for uncertainty in breathing pattern

00
500 « larger uncertainty in w
gradually yields more
400 ITV-like plans
300 + special case wk =1
models systematic
200 error
100 — J—
0 Ref: McQuaid 2011
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Respiratory motion

Dose delivered to moving tissue (nominal trajectory)
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Realistic cases
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Respiratory motion

Assume predictable motion

Dose on exhale Accumulated dose
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Respiratory motion

No uncertainty medium motion  Motion modeled as
uncertainty systematic error

Ref: Heath 2009 Med Phys
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Respiratory motion

Benefit:

* 4D optimization yields dose horns

» Normal tissue dose reduction compared to PTV

» Stochastic programming can account for breathing variations

» Find the balance between robustness and
normal tissue sparing through horns
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Proton therapy

Range uncertainty in IMPT

RADIATION ONCOLOGY




Proton therapy
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Proton therapy

Robustness analysis:

5 mm range overshoot nominal plan
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Proton therapy

Stochastic programming:

Assume 3 scenarios:

* nominal scenario p,=05
* 5 mm range overshoot p,=0.25
* 5 mm range undershoot p; =0.25

MASSACHUSETTS ) H 5
GENERAL HOSPITAL MEDICAL SCHOO

RADIATION ONCOLOGY




Sensitivity analysis

5 mm range overshoot

generated using
stochastic programming
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Motivation

How is robustness achieved?

conventional plan generated using
stochastic programming
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Commercial implementations

Proton therapy led to the first implementation of
probabilistic / robust planning in commercial TPS

Examples: * IMPT Pinnacle (in development)
(implements a probabilistic approach)
« RayStation v4.5

(implements a minimax approach)
(Ref: Fredriksson 2011, Med Phys)

Before that: * Hyperion (in-house TPS in Tiibingen, Germany)

(coverage probability method to account for
positioning errors in prostate treatments)

(Ref: Baum 2006, R&O)
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Raystation 4.5

[ ——— User interface

Patient position uncertaimty

ror in patient posito

rufcer

Setup uncertainty

Range uncertainty

MASSACHUSETTS
GENERAL HOSPITAL

RADIATION ONCOLOGY

Raystation 4.5

tion Function

ROI: | W Prostate

Function type: Uniform Do @ Objective

Weight

vel [cGyl:
¥ Robust
W resuict function to beam

User can robustify important objectives
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Raystation 4.5

Compute Perturbed Dose Plan evaluation

Select Beam Set:

se properties

Density perturbation (%] 0 define error scenario
Isocenter shift X [cm]:

Isocenter shift ¥ [cm]:

Isocenter shift Z [c
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Summary

Stochastic programming for handling uncertainty:

« optimize expected value of the objective function

« general purpose method applicable to many uncertainties
Advantage over a PTV depends on type of uncertainty:

« Automating target expansions
(systematic positioning errors)
Normal tissue dose reduction through horns
(respiratory motion)

« Mitigate beam misalignments risks
(IMPT)
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Status in practice

Range and setup uncertainty in IMPT:

« Fundamental limitations of the PTV concept
« led to the first commercial implementations

Respiratory motion

« Dose accumulation relies on deformable registration
« Computationally intensive

Setup errors, inter-fraction organ motion

« Qualitatively similar to PTV plans
* Magnitude of the error reduced through image guidance
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