

Stochastic programming methods for handling uncertainty and motion in IMRT planning

Jan Unkelbach

Industry collaborations: RaySearch, Philips Medical Systems

HARVARD MEDICAL SCHOOL

Content

- A. Stochastic programming in IMRT planning
- B. What is the advantage over a PTV approach?
 - 1. Systematic positioning errors Balancing target coverage and normal tissue sparing
 - 2. Respiratory motion Reducing normal tissue dose through 'horns'
 - 3. Range uncertainty in proton therapy Breakdown of the static dose cloud approximation

HARVARD MEDICAL SCHOOL

Fluence map optimization in IMRT

Minimize dose-based objective function

minimize f(d)

subject to d = Dx $x^{3}0$

Including motion and uncertainty

Assume a discrete set of errors can occur

Delivered dose depends on the error scenario k

$$d^k = D^k x$$

Assign probabilities to errors: p_k

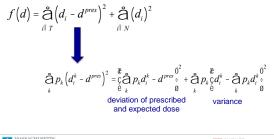
Minimize expected value of objective function

minimize
$$\mathop{a}_{k} p_{k} f(d^{k})$$

MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY HARVARD MEDICAL SCHOOL

Including motion and uncertainty

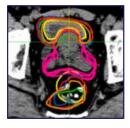
Quadratic objective function

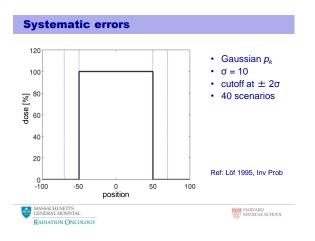


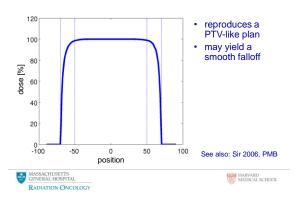
MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY HARVARD MEDICAL SCHOOL

Systematic errors

Systematic errors (Setup errors or internal deformation)







Systematic errors

Benefit:

- Automation: no explicit PTV definition necessary
- Could optimally balance target coverage and OAR sparing

Stochastic programming natural with TCP/NTCP

minimize $\mathop{a}_{k}^{*} p_{k} \operatorname{TCP}(d^{k})$

MASSACHUSETTS GENERAL HOSPITAL

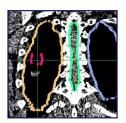
RADIATION ONCOLOGY

marginalization of a TCP model over the uncertain dose distribution

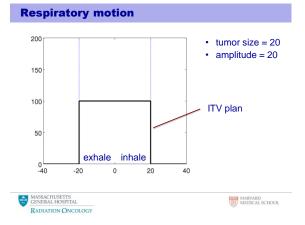
subject to $a_k p_k \text{NTCP}(d^k) \neq 0.05$

Motion

Respiratory motion



HARVARD MEDICAL SCHOOL



Respiratory motion

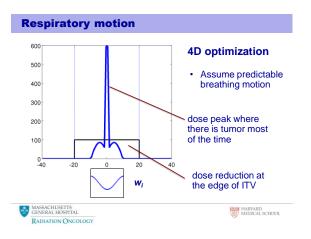
Can normal tissue dose be reduced?

Tumor accumulates dose in different breathing phases

$$d = \mathop{\stackrel{n}{\overset{n}{\xleftarrow}}}_{i=1} w_i D^i x \qquad \mathop{\stackrel{n}{\overset{n}{\xleftarrow}}}_{i=1} w_i = 1$$

Idea:

- · reduce dose to regions where the tumor is rarely
- · deliver higher dose to regions always occupied by tumor

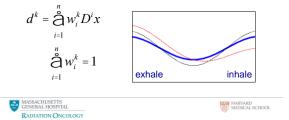


Respiratory motion

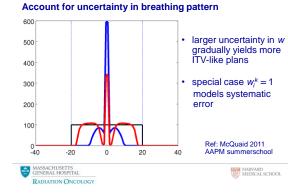
Problem: dose will degrade if breathing pattern varies

Stochastic programming:

Allow different breathing patterns w^k with probability p_k

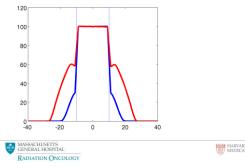


Respiratory motion



Respiratory motion

Dose delivered to moving tissue (nominal trajectory)



HARVARD MEDICAL SCHOOL

Realistic cases

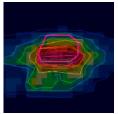


MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY

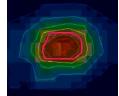
HARVARD MEDICAL SCHOOL

Respiratory motion

Assume predictable motion



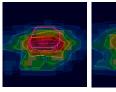
Dose on exhale

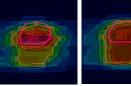


Accumulated dose

MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY

Respiratory motion





No uncertainty

Ref: Heath 2009 Med Phys

HARVARD MEDICAL SCHOOL

Respiratory motion

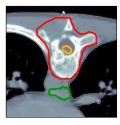
Benefit:

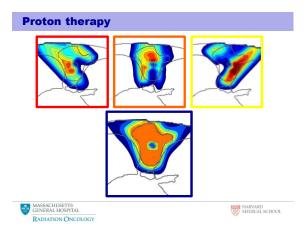
- 4D optimization yields dose horns
 - Normal tissue dose reduction compared to PTV
- Stochastic programming can account for breathing variations
 - Find the balance between robustness and normal tissue sparing through horns

HARVARD MEDICAL SCHOOL

Proton therapy

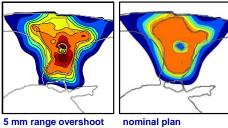
Range uncertainty in IMPT





Proton therapy

Robustness analysis:



MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY HARVARD MEDICAL SCHOOL

Proton therapy

Stochastic programming:

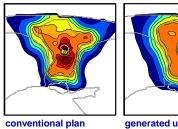
Assume 3 scenarios:

•	nominal scenario		$p_1 = 0.5$

- 5 mm range overshoot $p_2 = 0.25$ • 5 mm range undershoot $p_3 = 0.25$
- MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY

Sensitivity analysis

5 mm range overshoot

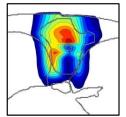


generated using stochastic programming

MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY HARVARD MEDICAL SCHOOL

Motivation

How is robustness achieved?



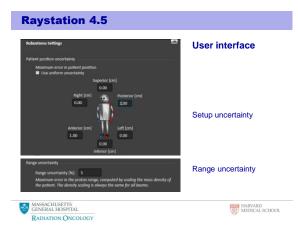
conventional plan

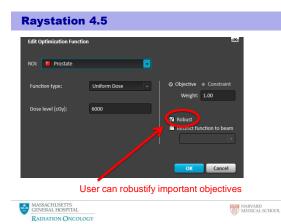
MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY stochastic programming

generated using

Commercial implementations

Proton therapy led to the first implementation of probabilistic / robust planning in commercial TPS Examples: • IMPT Pinnacle (in development) (implements a probabilistic approach) • RayStation v4.5 (implements a minimax approach) (Ref: Fredriksson 2011, Med Phys) Before that: • Hyperion (in-house TPS in Tübingen, Germany) (coverage probability method to account for positioning errors in prostate treatments) (Ref: Baum 2006, R&O)





Plan evaluation

define error scenario

Summary

Stochastic programming for handling uncertainty:

- · optimize expected value of the objective function
- general purpose method applicable to many uncertainties

Advantage over a PTV depends on type of uncertainty:

- Automating target expansions (systematic positioning errors)
- Normal tissue dose reduction through horns
 (respiratory motion)
- Mitigate beam misalignments risks
 (IMPT)

HARVARD MEDICAL SCHOOL

Status in practice

Range and setup uncertainty in IMPT:

- · Fundamental limitations of the PTV concept
- · led to the first commercial implementations

Respiratory motion

- · Dose accumulation relies on deformable registration
- · Computationally intensive

Setup errors, inter-fraction organ motion

- Qualitatively similar to PTV plans
- · Magnitude of the error reduced through image guidance

