Coverage-based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment

Huijun Xu, Ph.D.
Acknowledgement and Disclosure

- Dr. Jeffrey Siebers
- Dr. DJ Vile
- Dr. Elisabeth Weiss
- Dr. Geoffrey Hugo
- Dr. Gary Christianson
- Ford Sleeman

- NIH Grant No.P01CA116602 and Philips Medical Systems.

- Dr. J. James Gordon
- Dr. Manju Sharma
- Dr. Jeffrey Williamson
- Dr. Martin Murphy
- Dr. Mirek Fatyga
Content

For prostate IMRT treatment planning,

• What are the major contributing factors to target and normal tissue coverage probability?

• What are the similarities and differences of coverage-based planning techniques?

• What are the benefits and limitations of coverage-based planning techniques?
Geometric uncertainties (GUs) in multi-fractional prostate IMRT

- **A. Setup uncertainties**
- **B. Contouring uncertainties**
- **C. Interfraction and intrafraction organ variations**

Planned geometry ≠ Treatment geometry
Conventional method to consider GUs

• Apply safety margins and use surrogate volumes
 – Expand CTV to PTV (and sometimes OAR to PRV) for treatment planning

 – Then, the planned dose to PTV / PRV is assumed to be the dose received by CTV / OAR with GUs
Conventional method to consider GUs

- Margins are usually determined empirically by the planner

Empirical margin formula, e.g., CTV-to-PTV margin = 2.5\(\Sigma\) + 0.7\(\sigma\) (van Herk 2000)
- \(\Sigma\) = quadratic sum of SD of all systematic errors
- \(\sigma\) = quadratic sum of SD of all random errors

Therefore, CTV-to-PTV margin is ~1cm for \(\Sigma = \sigma = 3\) mm

- A high target coverage + acceptable normal tissue sparing is expected
coverage probability q

- q is the probability that $D_v \geq \text{dose } d$ for an ROI (Gordon and Siebers)
- To compute q, usually a large number of sampled treatment scenarios are simulated.

Simulated “moving” CTVs: positional and shape changes based on the mathematical model of GUs.

Isodose surface of dose d:
For prostate IMRT plans, invariant dose distribution is sufficiently accurate. (Sharma et al)

Coverage q distribution of 28 prostate patients

- For all the IMRT plans
 - Same margin: 1cm PTV van Herk margin (for $\Sigma = \sigma = 3$mm)
 - Same simulated setup uncertainties:
 - σ is always 3mm with $\Sigma = 1, 3, 5$mm, respectively

Σ (mm)
\begin{tabular}{c|cccc}
 & 1 & 3 & 5 & 7 \\
\hline
q (%) & 100 & 80 & 40 & 20 \\
\end{tabular}

Often, the coverage probabilities ≠ the value implied by margin formula

Major contributing factor to coverage

• Geometric uncertainties vs. “Dosimetric margin (DM)”
 – where DM = CTV-to-TV margin, and “Treated volume (TV)” is the volume enclosed by a critical isodose surface (ICRU 62).

• Dependent on patient-specific anatomy and plan design such as beam arrangement.
To achieve desirable coverage for each patient,

A potential solution is ...

Using coverage probability for plan optimization
Coverage-based planning (CP)

• An approach of probabilistic treatment planning that uses **probabilistic DVH (pDVH)** criteria
 – The corresponding DVH criteria are replaced.
 – Coverage probability is repeatedly computed and optimized to generate a dose distribution that is immune to the geometric uncertainties.
pDVH

• Metrics in the format of $D_{v,q}$
 – with D_v being the dose delivered to the fractional volume v of a structure
 – with q being probability that $D_v \geq$ the objective value

• Examples of pDVH criteria
 – CTV: $D_{98,95} \geq$ TargetDose
 • 95% probability that $D_{98} \geq$ TargetDose
 – bladder/rectum: $D_{25,5} \leq$ OarDose
 • 5% probability that $D_{25} \geq$ OarDose
 • 95% probability that $D_{25} \leq$ OarDose
DVH samples to get pDVH for current plan

• Simulate a large number of (e.g., 1000) virtual treatment courses that are sufficiently representative to all the possible GUs
• Compute dose for each fraction and accumulate dose for each treatment course
• Get e.g., 1000 DVHs for each ROI
pDVH criteria for optimization

CTV: $D_{98,95} \geq \text{TargetDose}$

- Get CTV pDVH of $q=95\%$ by connecting the Dv values below 95% CTV DVHs.
- Find D_{98} on this pDVH and compare it with TargetDose
- If $D_{98,95} < \text{TargetDose}$, increase dose to CTV until the criterion is met
pDVH criteria for optimization

bladder/rectum: $D_{25,5} \leq OarDose$

- Get OAR pDVH of $q=5\%$ by connecting the D_v values below 5% OAR DVHs
- Find D_{25} on this pDVH and compare it with $OarDose$
- Optimize the dose until D_{25} is lower than $OarDose$ for at least 95% cases
Two CP techniques

- Optimized margin (OM) planning
- Coverage-optimized planning (COP)
Optimized margin (OM) planning

- Adjust PTV until target pDVH criteria are met

For example:
\[D_{98,95} \geq 78\text{Gy} \text{ (CTV}_{\text{prostate}}) \]
and
\[D_{98,95} \geq 66\text{Gy} \text{ (CTV}_{\text{SV}}) \]

Coverage-optimized planning (COP)

- No need of PTV or PRV
- TPS optimizes “dosimetric margins” directly based on pDVH criteria

COP pDVH criteria

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTV prostate</td>
<td>$D_{98.95} \geq 78 {100}, D_{2.5} \leq 81 {50}$</td>
</tr>
<tr>
<td>CTV SV</td>
<td>$D_{98.95} \geq 66 {100}$</td>
</tr>
<tr>
<td>Bladder</td>
<td>$D_{70.5} \leq 18, D_{50.5} \leq 36, D_{30.5} \leq 57, D_{20.5} \leq 66,$</td>
</tr>
<tr>
<td></td>
<td>$D_{14.5} \leq 69, D_{9.5} \leq 75, D_{2.5} \leq 81 {10}$</td>
</tr>
<tr>
<td>Rectum</td>
<td>$D_{50.5} \leq 36, D_{30.5} \leq 51, D_{20.5} \leq 66, D_{5.5} \leq 69, D_{2.5} \leq 75 {10}$</td>
</tr>
</tbody>
</table>

COP pDVH objective functions

\[
f = \begin{cases}
\sum_{v_n \in \text{ROI_neighborhood}, DAPC \leq d_n \leq T_{Rx}} \omega^2 (d_n - T_{Rx})^2 & \text{(min pDVH)} \\
\sum_{v_n \in \text{ROI_neighborhood}, O_{Rx} \leq d_n \leq DAPC} \omega^2 (d_n - O_{Rx})^2 & \text{(max pDVH)}
\end{cases}
\]

- **ROI_neighborhood** includes all voxels with potential contribution to the coverage probability of ROI.
COP pDVH objective functions

\[f = \begin{cases}
\sum_{v_n \in \text{ROI_neighborhood}, DAPC \leq d_n \leq T_{Rx}} \omega^2 (d_n - T_{Rx})^2 & \text{ (min pDVH)} \\
\sum_{v_n \in \text{ROI_neighborhood}, O_{Rx} \leq d_n \leq DAPC} \omega^2 (d_n - O_{Rx})^2 & \text{ (max pDVH)}
\end{cases} \]

- Voxel-specific \(\omega \)
- Optimize dose to the voxels with more significant coverage contribution in priority
COP pDVH objective functions

\[f^* = \begin{cases}
\sum_{v_n \in \text{ROI}_\text{neighborhood}} & (DAPC \leq d_n \leq TRx) \\
\sum_{v_n \in \text{ROI}_\text{neighborhood}} & (ORx \leq d_n \leq DAPC)
\end{cases} \omega^2 (d_n - TRx)^2 \quad \text{(min pDVH)}
\omega^2 (d_n - ORx)^2 \quad \text{(max pDVH)}
\]

Optimize ROI_neighborhood voxels with dose between \textbf{DAPC} and \textbf{TRx} (or \textbf{ORx})

\textbf{DAPC}: current dose at prescribed coverage on pDVH,
\textbf{TRx}: target dose, or \textbf{ORx}: OAR tolerance dose
Studies of COP and OM

- 19 high-risk prostate cancer patients treated by multi-fractional IMRT
 - Interfraction organ deformable motions for treatment with prostate centroid aligned
 - contouring uncertainties
Interfraction deformable motions

- Complex deformable motions are of higher dimensionality than rigid motions
- For prostate, can vary significantly during the treatment course due to differential bladder and rectal filling
- The suggested PTVs in many studies are population-based and should be used with caution for individual patient.

• The planning image

• One fractional image
Interfraction deformable motions

- In our study, DVF is used to represent ROI positional and shape changes for treatment with CTV_{prostate} centroid aligned.

- DVF is calculated based on grayscale and contour information on the patient CT images (Christensen et al).

Principal analysis component (PCA) model

19 patients treated with prostate centroid aligned, each with 8–13 prostate CT images

Patient-specific PCA model

Input: 7-12 DVFs for one patient

In reality, a reduced number of input images or population-based data might suffice.

Output: patient-specific synthetic DVFs
Synthetic anatomy generated by PCA

Planning anatomy + Synthetic DVF = Synthetic deformed anatomy in a virtual treatment fraction simulation
CP vs. conventional planning

- **CP: COP**
 - “Dosimetric margins” generated by TPS for each patient
 - No PTV

- **CP: OM**
 - Optimized PTV margins for each patient
 - 0-10mm for prostate, 0-18mm for seminal vesicles

- **FM** (conventional technique)
 - Fixed PTV margins for all the patients:
 - 5mm for prostate and 8mm for seminal vesicles

(Mutanga et al)

Which plan is the best?

- **Primary comparison criteria**
 - $D_{98,95}$ values for $CTV_{prostate}$ and CTV_{SV}
Which plan is the best?

When primary metric is comparable...

- **Secondary criteria**
 - P^+, the probability of uncomplicated tumor control, a function of TCP and NTCP distribution for e.g., 1000 treatment courses

\[
P^+ = E[TCP_{CTV_{prostate}}] \times (1 - E[NTCP_{bladder}]) \times (1 - E[NTCP_{rectum}])
\]
Benefit of CP for organ deformable motions

- **CP techniques can produce better plans than FM**
 - Either (12/19) OM plans or (7/19) COP plans were preferred

- **The relative advantages between the three plans are patient-specific**
 - *Relative to FM plans:*
 - COP and OM plans improve up to 5% CTV $D_{98,95}$ and obtain 1-23% P+ gain
 - *COP vs. OM:*
 - In general, COP plans have higher P+ gain and OM plans improve more CTV coverage

Contouring uncertainties

- E.g., Inter-observer difference

- Are challenging regarding
 - the microscopic spread of disease
 - the inability to reproducibly distinguish tumor – normal tissue boundaries in anatomical images

- May be the dominant geometric uncertainties, when positioning and shape error components are reduced by e.g., image guidance
Contouring uncertainties

• Quantified by the deviation between the physician contoured volume and alternative possible volumes in our study.
• Use vectors D for the deviations caused by inter-observer contour variability and CT image quality limitations.
Vector $D = F_{CT} \times F_{SD}$

- F_{SD} (SD factor), SD of inter-observer contouring difference
 - Direction: expansion or contraction for conservative or liberal contouring
 - Magnitude follows an inverse standard normal cumulative density function,
 - mean = 0, as the average of the delineated ROI surface is assumed the best available estimate of the true ROI surfaces,
 - standard deviation in RL (x), PA (y) and SI (z) direction are listed below.

<table>
<thead>
<tr>
<th>ROI</th>
<th>SDx</th>
<th>SDy</th>
<th>SDz</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CTV_{prostate}$</td>
<td>1.7</td>
<td>2</td>
<td>2.5</td>
<td>van Herk, Rasch et al</td>
</tr>
<tr>
<td>CTV_{SV}</td>
<td>1.7</td>
<td>2</td>
<td>3</td>
<td>Fiorino et al, Deurloo et al</td>
</tr>
<tr>
<td>bladder</td>
<td>0.7</td>
<td>0.7</td>
<td>3</td>
<td>Weiss et al</td>
</tr>
<tr>
<td>rectum</td>
<td>1.3</td>
<td>1.3</td>
<td>3</td>
<td>Weiss et al</td>
</tr>
</tbody>
</table>
Vector $\mathbf{D} = \mathbf{F}_{\text{CT}} \times \mathbf{F}_{\text{SD}}$

- \mathbf{F}_{CT}: CT factor, a function of CT image contrast around ROI boundary

2D D vector field with vector magnitude $= \mathbf{F}_{\text{CT}}$
CP vs. conventional planning

• **CP: COP**
 – “Dosimetric margins” generated by TPS for each patient
 – No PTV

• **CP: OM**
 – Optimized PTV margins for each patient
 – 2-5mm for prostate, 0-4mm for seminal vesicles

• **FM (conventional technique)**
 – Fixed PTV margins for all the patients:
 – $PTV_{\text{Prostate}} = 4,5,6\text{mm}$, $PTV_{\text{SV}} = 4,5,7\text{mm}$ for RL, PA, SI directions (based on van Herk margin formula)
Benefit of CP for contouring uncertainties

- **CP techniques can produce better plans than FM**
 - Either (7/19) OM plans or (11/19) COP plans were preferred

- **The relative advantages between the three plans were patient-specific**
 - *Relative to FM plans:*
 - COP and OM plans improve up to 3.5% CTV $D_{98.95}$ and obtain 1-22% P+ gain
 - *COP vs. OM:*
 - In general, COP plans have higher P+ gain and OM plans has better CTV coverage
Benefit of CP

- Right table, monitor units per fraction of COP, OM, FM plans for 19 patients
- CP plan delivery complexity does not get increased significantly.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Interfraction deformable motions</th>
<th>Contouring uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>COP</td>
<td>OM</td>
</tr>
<tr>
<td>1</td>
<td>483</td>
<td>-3%</td>
</tr>
<tr>
<td>2</td>
<td>448</td>
<td>6%</td>
</tr>
<tr>
<td>3</td>
<td>636</td>
<td>-1%</td>
</tr>
<tr>
<td>4</td>
<td>531</td>
<td>-2%</td>
</tr>
<tr>
<td>5</td>
<td>489</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>401</td>
<td>-1%</td>
</tr>
<tr>
<td>7</td>
<td>406</td>
<td>-1%</td>
</tr>
<tr>
<td>8</td>
<td>361</td>
<td>3%</td>
</tr>
<tr>
<td>9</td>
<td>440</td>
<td>16%</td>
</tr>
<tr>
<td>10</td>
<td>537</td>
<td>1%</td>
</tr>
<tr>
<td>11</td>
<td>478</td>
<td>7%</td>
</tr>
<tr>
<td>12</td>
<td>565</td>
<td>-1%</td>
</tr>
<tr>
<td>13</td>
<td>555</td>
<td>-2%</td>
</tr>
<tr>
<td>14</td>
<td>541</td>
<td>-2%</td>
</tr>
<tr>
<td>15</td>
<td>434</td>
<td>-2%</td>
</tr>
<tr>
<td>16</td>
<td>441</td>
<td>-1%</td>
</tr>
<tr>
<td>17</td>
<td>552</td>
<td>-1%</td>
</tr>
<tr>
<td>18</td>
<td>476</td>
<td>1%</td>
</tr>
<tr>
<td>19</td>
<td>405</td>
<td>0%</td>
</tr>
</tbody>
</table>

Avg.±SD(MU) 483±71 486±20 490±12 518±80 464±57 497±61
One limitation of current CP

- Sometimes, the tradeoff between CTV and OAR may not be balanced optimally.
 - For example, COP plans may fail \(\text{CTV}_{\text{prostate}} \) or \(\text{CTV}_{SV} \) coverage objective:
 - 4/19 plans, by >5% for interfraction deformable motions
 - 3/19 plans, by up to 3.5% for contouring uncertainties
Future work of CP techniques

- Optimization of the objective function weights (CTV vs. OAR) on a patient-specific basis may be desirable...

<table>
<thead>
<tr>
<th>Optimization criteria for CP_{COP} plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTV$_{prostate}$</td>
</tr>
<tr>
<td>CTV$_{SV}$</td>
</tr>
<tr>
<td>Bladder</td>
</tr>
<tr>
<td>Rectum</td>
</tr>
</tbody>
</table>
Other limitations of CP

- Optimization time is longer
 - Approximately, COP 4hr vs. OM 1hr vs. FM 10min
- May potentially introduce uncertainties
 - Representativeness of the mathematical model of geometric uncertainties
 - Deformable image registration
 - Sampling of treatment scenarios
 - Any involved approximation ...
- Therefore, more researches are needed.
Summary

• Coverage probability is a function of geometric uncertainties and dosimetric margin between ROI and treated volume. Coverage probability depends on the patient individual anatomy and plan design.

• CP, a PTP approach, is characteristic with pDVH criteria.
 – OM optimizes PTV based on CTV pDVH criteria
 – COP does away PTV/PRV and uses pDVH criteria for both CTVs and OARs.
Summary

Based on the studies for interfraction deformable motions and contouring uncertainties for prostate patients

• With similar plan complexity, both CP techniques (COP and OM) generate better plans than conventional planning using fixed PTV.
• The benefit of CP is patient-specific, some in target coverage, others in OAR sparing.
• The limitations of CP (e.g., tradeoff, time and potential uncertainties) call for more researches.
Thank you for your attention!