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Shape-dose relationship for g msmms
radiation plan quality

Shape relationship DB of prior patients Dose prediction

parotids

Dose (Gy)

For a selected Organ at Risk and %V, find the Decisions:
lowest dose achieved from all patients whose * Plan quality assessment
%V is closer to the selected target volume? * Automated planning

+ IMRT objective selection
+ Dosimetric trade-offs




Interface @ PsHorns

Sample automated radiation Vs
planning result
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Automated plan

Original plan

30% reduction in dose to parotids
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brain (Gy) (max) Brainstem (Gy) (max) Corddmm (Gy) (max) L inner ear (Gy)(mean)
original 61.25 54.58 41.75 57.18
re-plan 56.33 46.48 37.89 43.72
R inner ear (Gy) (mean) mandible (Gy) (max) larynx for edema (V50) esophagus (Gy)(max)
original 40.57 66.58 61% 63.74
re-plan 38.38 63.78 59% 61
Current dose based auto-planningapesiees

» Has demonstrated improved quality

» Removed human variability for standard
cases

» Now advancing commercially
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That was all DVH based @ PSS

» Dose is not what matters to the patient
» Quantify the patient experience?

Should we just apply existing NTCP and
TCP models to dose predictions?

...or should we try to expand the knowledge
based approach using clinical data?
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Mucositis data collected at JHU
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Toxicity grade

Promote Culture of Data Collection  gwusuoms

Data collected over entire treatment

End of Follow Up
e Treatment Late toxicity
Todely Patient status
Disease response

Patient status
Symptom Mgmt

At what time point do we have
T R .
o B enough data to make decision
o o based on future prediction?
Auto  Risk Symptom  Therapy Input Variables => Prediction?

Plan Based Mgmt Mgmt
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Data Collection in Clinic

Clinical Assessment Quality of life Disease Status

DI MOMK) B Rt
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Head and Neck Inventory A st
~800 pts up to 6 yr follow up
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Head and Neck Inventory Qs
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Organs at risk with full 3D

dosimetry
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Prostate Inventory

~1700 pts - ~650 with dose -
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Toxicity Prevalence

(P. Lakshminarayanan)
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Toxicity and Dose Volume Histogram g rusions

(Scott Robertson et al...)
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Bad DVH! &) DI HOKIS

|

» DVH assumes that every sub-region of an OAR has the
same radiosensitivity and functional importance to the
related toxicity

* DVH assumes that each OAR is uniquely responsible for
the overall human function related to the toxicity

Spatially dependent features of auusurs
dOSG |n the StrUCtureS (F. Marungo et al.)

Method Voice dysfunction ~ Xerostomia
n=99, n,=8, n=91 n=364, n,=275, n =89

Bagged Naive Bayes (1000 iterations) 0.915 0.743
Bagged Linear Regression (1000

iterations) 0.905 Wy
Naive Bayes 0.900 0.734
Linear Regression 0.896 0.731
Random Forest (1000 trees) 0.724 0.683
NTCP g 0.596 0.700

Weight loss prediction & s

(N. Minoru, S. Cheng et al...)

Endpoint: > 5kg loss at 3 months post RT

: At end of RT
At plai g
nnin;

Loy 055 <27561
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FALSE FALSE PASE FASE  PASE  RALSE  TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FAISE TRUE FALSE TRUE
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Pancreas Resectability Ao

(S. Cheng etal...)
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5432101234567 891011231415 Distance_SMA_75% 0.4101 0.9975 0.0805
Distance from PTV (cm)
e i o — Distance_ClosestVessel_0% -1.0421 -0.4121 0.0361*
||H|”||| Ditince Closestvessel 25% 0613 004z 00t
v . o
ey | Ditnce ClosestVessel S0% 03898 02739 003
Distance Closestvessel 75% 008 ose oot
PTV volume 89.2791 66.7585 0.0065*
28

Summ ary & s oS

We can quantify the patient experience and are
improving our capabllities rapidly

Itis possible to collect and house RT data/knowledge
in a clinical setting

» Current dose based auto-planning utilizes a learning

health system

+ Data science models are maturing that can convert

the knowledge to clinical predictions

Incorporation of these predictions into theglanning
process would make Leonard “Bones” McCoy proud

The potential to have clinical impact is evident...
..we have work to do which requires real partnership

with our clinicians
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Precision Radiotherapy A s
Treatment Planning
B \
\\ I
N
A\ N
L
o5
R_paratid I_submandibular
brainstem fmandible |
jeord LT
yroc r_submandibulai
OVH: serial vs parallel [ Yt

Target

4 56 7 &

E =2 -1 0 12 3
] Distance (em)

For parallel organs, OAR2 is more easily spared.
For serial organs, OARI is more easily spared.

Problem & DI HOKIS

Ability to advance radiotherapy is limited by our
knowledge of which patients are at risk of high
grade toxicity or of limited ability to cure.

Knowledge from clinical trials is quite coarse and
fails to consider all of the aspects of the
individual patient.

‘Big Data’ offers an opportunity to better predict
treatment outcome and provide improved
clinical decisions for individual patients.
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treatment — detect outliers
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During Treatment Follow up
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(It’s all about the data)
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Knowledge Base

Decision Support

Shape eldonship DB ofpio paticnts

Shape based auto-planning
— Clinical (prostate, pancreas) N &

— Efficient high quality plan " 4 8
Weight loss prediction
— Improved symptom management..s
Toxicity Risk =
— DVH based

— Spatial dose based
Disease response prediction —=
— Pancreas resectability
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