ncospace^{**}

JOHNS HOPKINS

JOHNS HOPKINS

INCLUSION OF DATA-DRIVEN RISK PREDICTIONS IN RADIATION TREATMENT PLANNING IN THE CONTEXT OF A LOCAL LEVEL LEARNING HEALTH SYSTEM

Todd McNutt PhD Associate Professor Radiation Oncology Johns Hopkins University

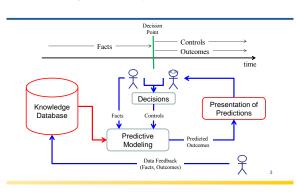
Disclosures This work has been partially funded with collaborations from:

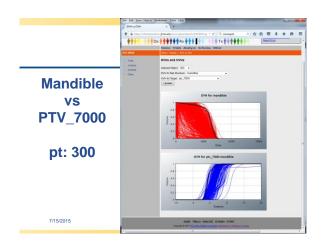
> Philips Radiation Oncology Systems Elekta Oncology Systems **Toshiba Medical Systems**

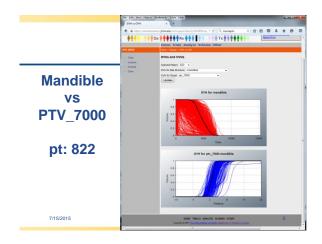
> > as well as **Commonwealth Foundation Maritz Foundation**

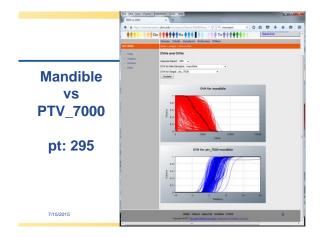
Learning health system

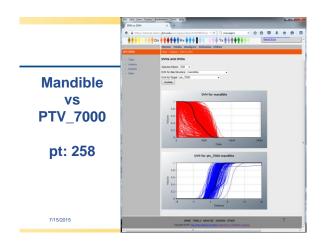
JOHNS HOPKINS

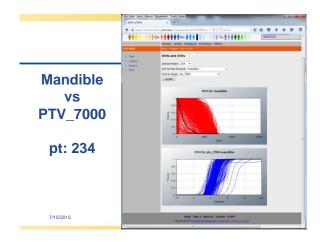


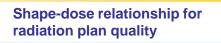


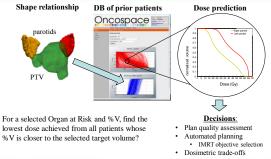










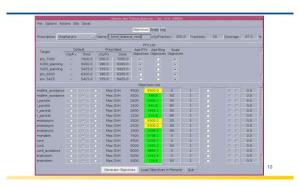


JOHNS HOPKINS

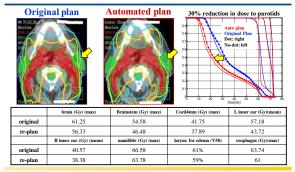
Interface

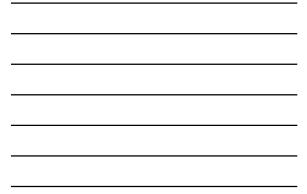
IOHNS HOPKINS

JOHNS HOPKINS



Sample automated radiation planning result





Current dose based auto-planning

- Has demonstrated improved quality
- Removed human variability for standard cases
- Now advancing commercially

12

That was all DVH based

IOHNS HOPKINS

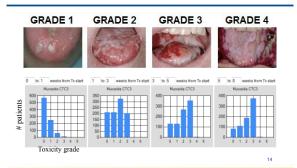
- · Dose is not what matters to the patient
- Quantify the patient experience?

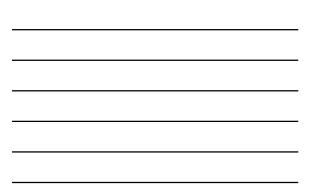
Should we just apply existing NTCP and TCP models to dose predictions?

... or should we try to expand the knowledge based approach using clinical data?

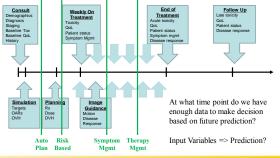
7/15/2015		13

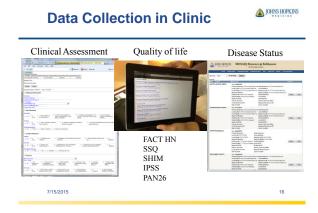
Mucositis data collected at JHU



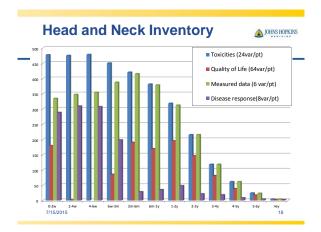


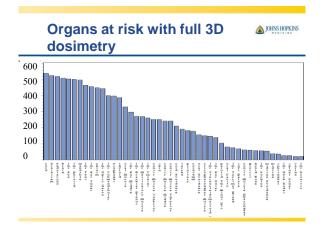
Data collected over entire treatment

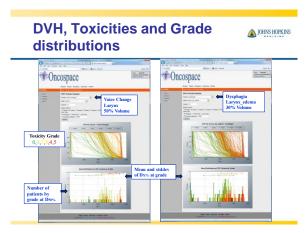


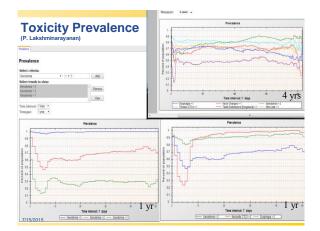




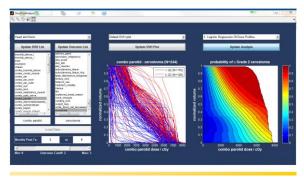


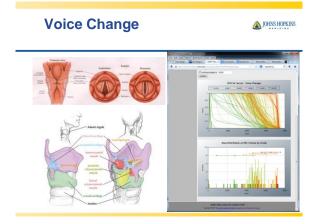






Toxicity and Dose Volume Histogram
(Scott Robertson et al...)





Bad DVH! JOHNS HOPKINS DVH assumes that every sub-region of an OAR has the same radiosensitivity and functional importance to the related toxicity

· DVH assumes that each OAR is uniquely responsible for the overall human function related to the toxicity

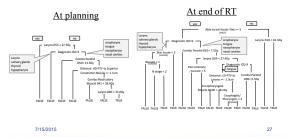
Spatially dependent features of dose in the structures (F. Marungo et al.)

Method	Voice dysfunction n=99, n,=8, n,=91	Xerostomia n=364, n _* =275, n.=89
Bagged Naïve Bayes (1000 iterations)	0.915	0.743
Bagged Linear Regression (1000 iterations)	0.905	0.737
Naïve Bayes	0.900	0.734
Linear Regression	0.896	0.731
Random Forest (1000 trees)	0.724	0.683
NTCPLKB	0.596	0.700

Weight loss prediction (N. Minoru, S. Cheng et al...)

JOHNS HOPKINS

Endpoint: > 5kg loss at 3 months post RT



Pancreas Resectability JOHNS HOPKINS (S. Cheng et al...) cP-value Distantce SMA 0% -0.8302 -0.3216 0.0764 0.1231 0.0922 ce_SMA_25% 0.3739 Distance SMA 50% -0.0362 0.4849 0.0882 -5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 101 11 21 31 415 Distance from PTV (cm) e_SMA_75% 0.4101 0.9975 0.0805 -1.0421 -0.4121 0.0361* ce_ClosestVessel_0% Dist estVessel_25% -0.6513 -0.0427 0.0454* ce ClosestVessel 50% -0.3894 0.2739 0.0373* 0.0238* 0.5603 Distance_ClosestVessel_75% -0.08

Summary

IA BO TAN THE LEF Partner ID Tarthof Anatomic Location Internet I Dedu Tart

JOHNS HOPKINS

PTV volume 89.2791 66.7585 0.0065*

- We can quantify the patient experience and are improving our capabilities rapidly •
- · It is possible to collect and house RT data/knowledge in a clinical setting
- Current dose based auto-planning utilizes a learning • health system
- Data science models are maturing that can convert the knowledge to clinical predictions
- Incorporation of these predictions into the planning process would make Leonard "Bones" McCoy proud
- · The potential to have clinical impact is evident...

...we have work to do which requires real partnership with our clinicians

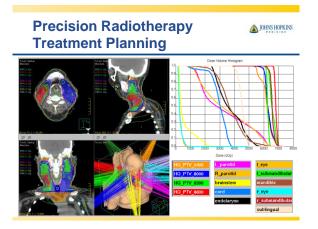
Acknowledgments

A JOHNS HOPKINS

• JHU-RO

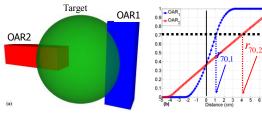
- Sierra Cheng MD
- Michael Bowers BS Joseph Moore PhD
- Scott Robertson PhD
- Pranav Lakshminarayanan John Wong PhD
- Theodore DeWeese MD
- GI Team
 - Joseph Herman MD Amy Hacker-Prietz PA
- H&N Team
 Harry Quon MD
 - Ana Keiss MD Mysha Allen RN
 - Sara Afonso RN
- Toronto-Sunnybrook
 - WilliamPatrick William Song PhD

- · JHU CS
- Russ Taylor PhD Russ Taylor PhD
 Misha Kazhdan PhD
- Fumbeya Murango BS
- Philips PROS
 Karl Bzdusek BS
- Toshiba
 - Minoru Nakatsugawa PhD Bobby Davey PhD
 - Rachel-Louise Koktava _
- John Haller Elekta
- Bob Hubbell
- University of Washington - Kim Evans MS
- Mark Philips PhD
 Kristi Hendrickson PhD



OVH: serial vs parallel

JOHNS HOPKINS



For parallel organs, **OAR2** is more easily spared. For serial organs, **OAR1** is more easily spared.

Problem

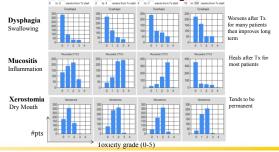
JOHNS HOPKINS

Ability to advance radiotherapy is limited by our knowledge of which patients are at **risk of high grade toxicity** or of limited ability to cure.

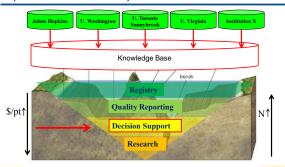
Knowledge from clinical trials is quite coarse and fails to consider **all of the aspects** of the individual patient.

'Big Data' offers an opportunity to **better predict treatment outcome** and provide improved clinical decisions for individual patients.

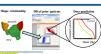
Toxicity trends during and after treatment – detect outliers



Oncospace Consortium Repository (It's all about the data)



- Shape based auto-planning
 - Clinical (prostate, pancreas)
 - Efficient high quality plan
- Weight loss prediction
- Improved symptom managementToxicity Risk
 - DVH based
 - Spatial dose based
- Disease response prediction
 - Pancreas resectability
 - Head and neck HPV dose de-escalation



- scalation

