Leveraging Innovation to Design Future Clinical Trials

Jeff M. Michalski, MD, MBA, FACP, FASTRO
The Carlos A Perez Distinguished Professor of Radiation Oncology

Outline

• National Clinical Trial Network
 • Transition from prior cooperative groups
• Infrastructure for radiation therapy QA
 • Transition from prior QA facilities
• Uses of RT data to improve outcomes
 • Treatment plan database (0617)
 • Analyses to understand unexpected result
• Correlative imaging science (0522)
• Prospective plan optimization (0126)

Multi-Institutional Research

• Tests science in real world
• Bridges gap between efficacy and effectiveness
• Facilitates dissemination of science into the community
• QA infrastructure
 • Maintains high level of treatment
 • Becomes a resource for investigations
National Clinical Trial Network

- Replaces prior cooperative groups
- Consolidates 10 groups to 5
- Consolidates QA and Imaging resources

NCI Cooperative Group Restructuring

<table>
<thead>
<tr>
<th>NRG</th>
<th>ECOG-ACRIN</th>
<th>Alliance</th>
<th>SWOG</th>
<th>COG</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP: National Surgical Adjuvant Breast and Bowel Project</td>
<td>ECOG: Eastern Cooperative Oncology Group</td>
<td>SWOG: Southwest Oncology Group</td>
<td>COG: Children’s Oncology Group</td>
<td></td>
</tr>
<tr>
<td>RTOG: Radiation Therapy Oncology Group</td>
<td>ACRIN: American College of Radiology Imaging Network</td>
<td>CALGB: Cancer and Leukemia Group-B</td>
<td>Formerly: CCO POB APOA</td>
<td></td>
</tr>
<tr>
<td>GOG: Gynecologic Oncology Group</td>
<td>ACGOG: American College of Surgeons Oncology Group</td>
<td>COG:</td>
<td>COG:</td>
<td></td>
</tr>
</tbody>
</table>

The Advanced Technology Consortium for Clinical Trials QA

National Cancer Institute U24 Grant
Consortium of clinical trial QA centers:
- Image-Guided Therapy QA Center
- Radiation Therapy Oncology Group – RT QA
- Radiological Physics Center
- Quality Assurance Review Center
IROC’s Definition

Who Are WE?

Imaging and Radiation Oncology Core (IROC) QA Consortium

- New clinical trials Quality Assurance organization comprised of 6 QA Centers with individual PIs
- IROC RT and Imaging Centers have an extensive experience, knowledge and infrastructure to improve the quality of clinical trials

IROC’s 5 General NCTN Core Services

1. Site Qualification
 (FQs, ongoing QA, proton approval, resources)
2. Trial Design Support/Assistance
 (protocol review, templates, help desk, key contact QA centers)
3. Credentialing
 (tiered system to minimize institution effort)
4. Data Management
 (pre-review, use of TRIAD, post-review for analysis)
5. Case Review
 (Pre-, On-, Post-Treatment, facilitate review logistics for clinical reviews)
More than 20,000 complete, volumetric datasets have been collected at ITC from >750 institutions, using 12 commercial TPS as of 10/15/13.

Uses of RT data to improve outcomes
- Treatment plan database (0617)
 - Analyses to understand unexpected result
- Correlative imaging science (0522)
- Prospective plan optimization (0126)
RTOG 0617
A Randomized Phase III Comparison of Standard-Dose (60 Gy) Versus High-Dose (74 Gy)
Conformal Radiotherapy with Concurrent and Consolidation Carboplatin/Paclitaxel +/-
Cetuximab In Patients with Stage IIIA/IIIB Non-Small Cell Lung Cancer (NSCLC)

Principal Investigator: Jeffrey D. Bradley, MD

NCI Sponsored Cooperative Groups:
RTOG, NCCTG, CALGB

Jeffrey D Bradley, Rebecca Paulus, Ritsuko Komaki, Gregory A. Masters, Kenneth Forster, Steven E. Schild, Jeffrey Bogart, Yolanda I. Garces, Samir Narayan, Vivek Kavadi, Lucien A Nedzi, Jeff M. Michalski, Douglas Johnson, Robert M MacRae, Walter J Curran, and Hak Choy

Overall Survival
Multivariate Cox Model

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Comparison (RL)</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation dose</td>
<td>60 Gy v 74 Gy</td>
<td>1.51 (1.12, 2.04)</td>
<td>0.007</td>
</tr>
<tr>
<td>Histology</td>
<td>Non-squam v Squam</td>
<td>1.31 (0.99, 1.75)</td>
<td>0.061</td>
</tr>
<tr>
<td>Max esophagitis grade</td>
<td>2 > 3 vs ≤3</td>
<td>1.52 (1.06, 2.20)</td>
<td>0.024</td>
</tr>
<tr>
<td>Heart Contour</td>
<td>Per Protocol vs. Not per protocol</td>
<td>0.67 (0.47, 0.96)</td>
<td>0.029</td>
</tr>
<tr>
<td>GTV</td>
<td>Continuous</td>
<td>1.001 (1.000, 1.002)</td>
<td>0.038</td>
</tr>
<tr>
<td>Heart V50(%)</td>
<td>Continuous</td>
<td>1.017 (1.004, 1.030)</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Backwards Selection: Exit criteria p>0.10
Two-sided p-values
Removed from model: Age (continuous), overall RT review (per protocol vs. not per protocol), and lung V5 (continuous)

0617 Quality Assurance

Measures differing between arms

Contouring scores for TVs, OARs, DVA of TVs, OARs, elapsed days were reviewed

<table>
<thead>
<tr>
<th>QA measure</th>
<th>Standard Dose 600Gy Per Protocol</th>
<th>High Dose 740Gy Per Protocol</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall RT Review</td>
<td>82.9%</td>
<td>73.9%</td>
<td>0.02</td>
</tr>
<tr>
<td>Elapsed RT days</td>
<td>89.9%</td>
<td>83.0%</td>
<td>0.04</td>
</tr>
<tr>
<td>PTV Contour</td>
<td>92.8%</td>
<td>86.0%</td>
<td>0.03</td>
</tr>
<tr>
<td>Brachial plexus contour</td>
<td>92.3%</td>
<td>85.5%</td>
<td>0.03</td>
</tr>
</tbody>
</table>

An unplanned subset analysis strongly suggests that radiation therapy compliance was not the cause for the poor performance of the high-dose group

Advancing RT – Adaptive

RTOG 1106 – Pi Kong

Registration

- Pre-RT/RT PET/CT Imaging

Schedules

- Arm 1: Concurrent Chemo-RT RT to 50 Gy (6.5 Gy/Fr) Carboplatin (IV weekly)
- Arm 2: Concurrent Chemo-RT RT to 50 Gy (6.5 Gy/Fr) Carboplatin (IV weekly)

Outcomes

- Arm 3: Continue RT Same RT plan to 50 Gy (5 Fr)
- Arm 2: Adaptive RT Based on during RT TPS RT 3.0 – 3.5 Gy, ≥5 Gy individualized by MLD

Other

- Complete Concurrent Chemotherapy

January 2015 accrual 62/138
RTOG 1308: PHASE III RANDOMIZED TRIAL COMPARING OVERALL SURVIVAL AFTER PHOTON VERSUS PROTON CHEMORADIOThERAPY FOR INOPERABLE STAGE II-IIIb NSCLC

*The total prescribed dose will be 70 (RBE) without exceeding tolerance dose-volume limits of all critical normal structures.

Pt: Zhongxing Liao, MD

• Uses of RT data to improve outcomes
 • Treatment plan database (0617)
 • Analyses to understand unexpected results
 • Correlative imaging science (0522)
 • Prospective plan optimization (0126)

NRG Clinical Imaging Priorities
• Investigate the role of imaging as a **biomarker for predicting response** to local and systemic therapies.
• Investigate that imaging is an early biomarker of response and **surrogate for established endpoints** such as local control or survival.
 – Long term goal is to replace distant endpoints that require long follow-up
 – Secondary goal is identifying patients who may benefit from early salvage or additional treatment
• Investigate the role of imaging to select and stratify patients for specific therapies (**integral biomarker**).
• Enhance and evaluate the use of molecular, physiological, morphological imaging to define **dynamic targets** for image-guided local therapies.
RTOG 0522 — A Randomized Phase III Trial of Concurrent Accelerated Radiation and Cisplatin Versus Concurrent Accelerated Radiation, Cisplatin, and Cetuximab (C225) for Stage III and IV Head and Neck Carcinomas (Kian Ang, PI)

Primary Site

<table>
<thead>
<tr>
<th>Larynx</th>
<th>8-9 Weeks Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck</td>
<td>Treatment</td>
</tr>
</tbody>
</table>

Nodal Status

<table>
<thead>
<tr>
<th>Node</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Acceleration/Fractionation

- **NS:** Concurrent Boost
- **CR:** Reassess CT scan
- **AR:** Plus cisplatin
- **ACR:** Plus C225

Use of IMRT

- **No:** IMRT (C225) on MRI or MRI for BI-CL
- **Yes:** IMRT (C225) plus C225

Pre-Treatment PET/CT

- **No:**
- **Yes:**

RTOG 0522 — Data Integration

- CT Sim
- RT Dose
- Pre-Tx
- Post-Tx
- ITC DB
- RTOG 0522
- VelocityAI Integration
- ACRIN DB
- ACRIN 4500

RTOG 0522 — Diagnostic PET registered to Planning CT using deformation

- Choose isodose values from RT Dose object

RTOG 0522

- Therapy response assessment using RT specific data with PET-CT pre-treatment and post-treatment images

Pre-Tx PET fused w/ Planning CT and Dose

Post-Tx PET fused w/ Planning CT and Dose

Advancing RT – Adaptive

RTOG 1106 – PI Kong

January 2015 accrual 62/138

- Uses of RT data to improve outcomes
 - Treatment plan database (0617)
 - Analyses to understand unexpected result
 - Correlative imaging science (0522)
 - Prospective plan optimization (0126)
Step 1 • Identify a set of site similar training patients
Step 2 • Generate pDVH model from training cohort
Step 3 • Utilize pDVH model to obtain DVH prediction for new patient

Inter-institutional QC at a small radiotherapy clinic

<table>
<thead>
<tr>
<th>Organ</th>
<th>V65(orig)-V65(replan)</th>
<th>dV65</th>
<th>V40(orig)-V40(replan)</th>
<th>dV40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectum</td>
<td>4.8%±2.2%</td>
<td>0.9%±1.1%</td>
<td>17.9%±10.3%</td>
<td>0.7%±1.4%</td>
</tr>
<tr>
<td>Bladder</td>
<td>3.4%±2.1%</td>
<td>0.3%±0.5%</td>
<td>6.0%±2.8%</td>
<td>0.6%±0.9%</td>
</tr>
</tbody>
</table>

Table 3. Average Reduction in V65 and V40 for Rectum and Bladder

RTOG 0126: study schema

1. Risk Group
 - Gleason Score 6 and PSA 10-20
 - Gleason Score 7 and PSA ≤15

2. Treatment
 - 3DCRT
 - IMRT

Arm 1
 - Minimum PTV prescription 70.2Gy in 39 fractions

Arm 2
 - Minimum PTV prescription 79.2Gy in 44 fractions

• Maximum dose variation
 - None: No more than 7% to ≤2% of PTV
 - Minor: 7%–10% to ≤2% of PTV
 - Major: More than 10% to ≤2% of PTV

• Minimum dose variation
 - None: Rx covers ≥98% of PTV
 - Minor: Rx covers 95%-98% of PTV
 - Major: Rx covers <95% of PTV or <100% of CTV
IMRT vs 3DCRT

Dosimetric comparison

All differences statistically significant p<0.0001

Time to Late GI Toxicity

Grade 2+ GI Late Toxicity

Grade 3+ GI Late Toxicity

Grade 2+ GI Late Toxicity – Multivariate Analysis

<table>
<thead>
<tr>
<th>Stratified variables</th>
<th>variables categories</th>
<th>HR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT method</td>
<td>3D-CRT 79.2Gy</td>
<td>RL</td>
<td></td>
<td>0.728</td>
</tr>
<tr>
<td></td>
<td>IMRT 79.2Gy</td>
<td>RL</td>
<td>(0.511, 1.035)</td>
<td>0.077</td>
</tr>
<tr>
<td>Age</td>
<td>≤ 70</td>
<td>RL</td>
<td></td>
<td>1.126</td>
</tr>
<tr>
<td></td>
<td>> 70</td>
<td>RL</td>
<td>(0.820, 1.547)</td>
<td>0.460</td>
</tr>
<tr>
<td>Race</td>
<td>White</td>
<td>RL</td>
<td></td>
<td>0.364</td>
</tr>
<tr>
<td></td>
<td>Non-white</td>
<td>RL</td>
<td>(0.202, 0.655)</td>
<td>0.001†</td>
</tr>
</tbody>
</table>

*Fine-Gray statistics. † Statistical significant at 0.05.
Would results have been different if "best" IMRT were utilized?

- Dose constraints defined based on prior experience
 - e.g. Rectal V70 < 25%
- Treatment planners not incentivized to continue optimization after constraints met
- Objective optimization prediction tools may set a patient specific target

RTOG 0126 analysis-210 cases

NTCP model: Excess risk of toxicity?
Concluding Remarks

- Multi-Institutional Technology Trials are facilitated by an infrastructure for plan quality assurance
- The data acquired for plan QA can serve as a reusable resource for supplemental investigations
- Future trials can be built upon knowledge gained from secondary analyses