Technology for Adaptive MR Guided Brachytherapy

Robert Cormack PhD Dana-Farber Cancer Institute & Brigham and Women's Hospital

Acknowledgements

- Patents submitted for IP related to actively tracked stylets
- Sequences and devices do not have regulatory clearance

Support

- NIH U41-RR019703
- AHA 10SDG261039
- NIH P41RR019703-07
- NCI R01CA111288-01 BRP
- BWH Radiation Oncology Kaye Award
- Siemens, IMRISHealthcare, IMRIS

Radiation Oncology

- Anthony D'Amico MD
- Akila Viswanathan MD
- Antonio Damato PhD
- Radiology
 - Clare Tempany MD
 - Kemal Tuncali MD
 - Wei Wang PhD
 - Ehud Schmidt PhD

Educational Goals

- Review justification of MR for brachytherapy
- Review different means of incorporating MR imaging into brachytherapy
- Discuss technology that facilitates MR guided brachytherapy

Outline

- Brachytherapy
 - Implant evaluation
 - Image based
 - Image guided
 - Adaptive
 - Role of MR
- MR based brachytherapy
- MR guided brachytherapy
- Applications of microcoils in brachytherapy

Ferenc Jolesz (1946-2014)

Brachytherapy

- Sites
 - Breast
 - Skin
 - Prostate
 - GYN
 - Cylinder
 - T&O
 - Interstitial

Applicator Based Brachytherapy

- Cylinder
 - Rx to surface (depth)
 - Plan determined by diameter and length
- Mammosite
 - Rx: 1cm from surface
- Postimplant dose evaluation
 - Dose calculation based on source
- Plan determined without anatomic information imaging provides information about source or applicator

Image Based Brachytherapy

- Imaging timing
 - After placement
 - Before dose
- Image provides
 - Applicator geometry
 - Anatomy
- Dose planning incorporated anatomic (image based) dose goals/constraints

Image Guided Brachytherapy

- Incorporates image based brachytherapy (volume studypreplan)
- Uses images to guide placement of applicator (needles)

Nag: Principles of Brachytherapy

Adaptive Brachytherapy (Dosimetry Guided Brachytherapy)

- Image guided
- Treatment planning in procedure room
 - planning
 - image based applicator updates
- Dosimetric feedback
- Update plan throughout procedure

Adaptive Brachytherapy (Dosimetry Guided Brachytherapy)

- Image guided
- TPS in procedure room
 - planning
 - image based applicator updates
- Dosimetric feedback
- Update plan throughout procedure

Adaptive Brachytherapy (Dosimetry Guided Brachytherapy)

- Image guided
- TPS in procedure room
 - planning
 - image based applicator updates
- Dosimetric feedback
- Update plan throughout procedure

Why MR for Brachytherapy?

- Pelvis

 CT anatomy
 MR anatomy
- GEC-ESTRO guidelines for target definition

MR Dose Evaluation

• MR

- T2 anatomy
- T1 sources (ambituity)
- CT
 - Sources
- Sources provide registration landmarks
- Fusion allows dose evaluation to MR based anatomy

MR Based Brachytherapy

- Applicators
 - MR safe
 - MR compatible
- Applicator can facilitate registration
- Model based applicator digitization helpful
- Needles identification challenging

MR Adaptive Prostate Brachytherapy

TPS

- Incorporate needle information
- Efficient feedback
- Passive needle identification (few needles at a time)

Technology

- MR compatible needle
- Template registration
- Survey meter
- Pulse sequences
 - T2 anatomy
 - T1 devices
- Passive tracking

GYN Interstitial HDR Brachytherapy (Passive Tracking)

- Trajectory planning
- Needle placement
 - scanner control
 - tracking out of plane
- Needle digitization
 - time consuming
 - subject to ambiguities
 - rely on post-implant CT

Device Tracking in MR

Passive Tracking

Device is visualized within images

3D: Slow

2D: Only in-plane part of device visible

MR Sequences optimized for device

Active Tracking

Device emits or receives a tracking signal

3D, Fast, High res

Unambiguous tracking

Special deviceIntegration with imaging system

Magnetic field tracking

SAMS Question

Active tracking with micro-coils measures position by:

- A. Sampling the spatially uniform magnetic field to determine spatial location
 - B. An RFID chip embedded on a non-magnetic stylet
- 78% C. Sampling spatially varying magnetic fields (gradients) superimposed on the static field to determine location
- 2%

5%

- D. An active radiologist to measure location of MR artifacts on ultrafast 3D volume scans
- E. Change in T2 weighted time constant resulting from the presence of 0.1 g of ferromagnetic material embedded in the coil.

Active tracking with micro-coils measures position by:

C: Sampling spatially varying magnetic fields (gradients) superimposed on the static field to determine location.

Reference: 3 Dumoulin et al. Magn Reson Med 1993; 29:411-15, Slides 17-19

Active Tracking on Metal I -- Coil Design

EM simulation of different coil geometries on metallic surface

Electromagnetic simulation of B_1^- field

Active Tracking on Metal II -- Construction of active device

multi-layered printed circuit coil

Active MR Tracking on Metal

- High Spatial Resolution $0.6 \times 0.6 \times 0.6 \text{ mm}^3$ Accuracy ~ 0.5 mm (static)
- High Temporal Resolution 40 updates/sec (N = 1)
- Heating < 0.6 °C increase for a 15-min scan (3.3 W/kg)
- Visualization Interface
- Real-time needle display
- Overlaid on 3D image

Active track the shaft of metallic

Applications of Active Tracking

- Trajectory planning: projecting needle path through imaging volume based on tracked position and orientation
- Needle placement: Identifying needle of interest, controlling scanner to image at needle tip
- Adaptive planning: reconstruct catheters in seconds, adjust treatment plan

Projected trajectories in imaging volume:animal model

Real-time Imaging with Tracking for Needle Placement

Real-time Imaging with Tracking for Needle Placement

Catheter Visualization and Scanner Control Human Study

Needle placement in a 84 y/o woman with recurrent uterine adenocarcinoma

Catheter Trajectory Reconstruction by MR Tracking Phantom Study

Fifteen needles: 9 parallel + 3 pairs crossed Through two templates with 5 mm grid of holes

A. MR-image based needle digitization (clinical standard)
 B. Active Tracking during stylet pull-out

3D distance: 1.1 ± 0.9 mm

3D MP-RAGE, resolution: $0.5 \times 0.5 \times 1 \text{ mm}^3$

Catheter Trajectory Reconstruction by MR Tracking

Compared to CT

SAMS Question

Active tracking can facilitate MR guided brachytherapy implants by providing the following functions except:

Active tracking can facilitate MR guided brachytherapy implants by providing the following functions except:

C: Absolute measurement of tissue oxygenation

Brachytherapy does not require information about oxygenation, while all other functions are mentioned in slides 25-31

Conclusions

- MR imaging is the modality of choice for pelvic imaging
- MR compatible applicators devices are readily available
- MR imaging can be incorporated in brachytherapy over a wide range of complexity and resource demands
- Many on-going efforts to facilitate MR brachytherapy
 - Transfer tables
 - Robotics
 - Tracking devices
 - Pulse sequences