Image Guidance in the SBRT Era: Optimizing Imaging and Managing Uncertainties

Kristy K Brock, Ph.D., DABR
Associate Professor
Department of Radiation Oncology, University of Michigan
What leads to deviations in plans?
Uncertainties in RT: GTV/CTV Definition

CT

MR

CT/PET

Histology
In Vivo Image Validation

- Triphasic CT Images
- Multiple Sequence MR Images
- FDG-18 PET Images
- Surgical Excision of Liver Lobe
- Fresh Specimen MR Imaging
- Specimen Fixation
- Fixed Specimen MR Imaging
- Specimen Dissection
- Histological Analysis of Tumor
Accurate Target Definition

Prior to Deformable Registration

Before

After

Deformable Registration

GTV Volume

CT = 13.9 cc

MR = 6.7 cc

$\Delta V = 7.2$ cc (52%)

coronal

sagittal

Deformable Registration

0.57
0.43
0.30
0.16
0.02
-0.12
-0.26
-0.40
-0.54
-0.68

[cm]
Removing Confounding Geometry

CT-exhale

CT\textsubscript{GRV}

MR-exhale
Clinical Effect

Prior to Deformable Registration

GTV (defined on MR, mapped to CT for Tx)

Region of CT-defined GTV that is missed
16 early stage NSCLC GTV’s were delineated by 11 radiation oncologists from 4 institutes.

- A median surface was computed and the delineation variation perpendicular to this surface was measured
 - Local standard deviation = SD
Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with SBRT

- The overall target delineation variability was quantified by the RMS of the local SD.
- The required margin was determined by expanding all delineations to encompass the median surface, where after the underlying probability distribution was modeled by a number of uncorrelated ‘pimples-and-dimples’.
Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with SBRT

- The overall target delineation variability was 2.1 mm (RMS).
- Institute I–III delineated significantly smaller volumes than institute IV, yielding target delineation variabilities of 1.2 mm and 1.8 mm respectively.
- The margin required to obtain 90% coverage of the delineated contours was 3.4 mm and 5.9 mm respectively.
Target Definition Uncertainty for SBRT

16 patients
10 radiation oncologists

RMS = 2 mm (1SD)
Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with SBRT

- The factor α in $M = \alpha \Sigma$ required to calculate adequate margins was 2.8–3.2, which is larger than the 2.5 found for 3D rigid target displacement.

Conclusion:

- A relatively small target delineation uncertainty of 1.2 mm–1.8 mm (1SD) was observed for early stage NSCLC.
Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with SBRT

- A 3.4–5.9 mm GTV-to-PTV margin was required to account for this uncertainty alone, ignoring other sources of geometric uncertainties.
The Role of IGRT

• Patients are not consistent from day to day
 – Soft tissue moves and deforms
 – Tumor and critical normal tissue do not always track with bones and external surface

• Treating normal tissue is never beneficial
 – Reducing the volume of normal tissue treated often enables a higher dose to be delivered to the target
 – Higher doses often lead to better tumor control
In-Room Technologies: volumetric CT-based

Varian
- kV planar
- kV CBCT
- MV planar

Elekta
- kV planar
- kV CBCT
- MV planar

Siemens
- MV planar
- MV CBCT

Accuracy Tomotherapy
- MV CT

Siemens
- In-room CT
Why In Room Imaging?

Simplified PTV margin recipe for dose - probability

To cover the CTV for 90% of the patients with the 95% isodose (analytical solution):

$$\text{PTV margin} = 2.5 \Sigma + 0.7 \sigma$$

$$\Sigma = \text{quadratic sum of SD of all preparation (systematic) errors}$$

$$\sigma = \text{quadratic sum of SD of all execution (random) errors}$$

(van Herk et al, IJROBP 47: 1121-1135, 2000)

*For a big CTV with smooth shape, penumbra 5 mm

*Courtesy Tim Craig, Marcel van Herk
PTV Margins in SBRT

• Smaller number of fractions has an impact on the model
• “Random errors” become systematic errors in the limit of 1-5 fractions
Components of a PTV

- The PTV is a geometrical concept introduced for Tx planning and evaluation.
- It is the recommended tool to shape absorbed-dose distributions to ensure that the prescribed absorbed dose will actually be delivered to all parts of the CTV with a clinically acceptable probability, despite geometrical uncertainties such as organ motion and setup variations.
- It is also used for absorbed-dose prescription and reporting.
- It surrounds the representation of the CTV with a margin such that the planned absorbed dose is delivered to the CTV.
- This margin takes into account both the internal and the setup uncertainties.
- The setup margin accounts specifically for uncertainties in patient positioning and alignment of the therapeutic beams during the treatment planning, and through all treatment sessions.

ICRU 83, 2010
1. Daily image guidance allows the planning target volume to be

A. Eliminated as long as you can visualize bony anatomy on the image
B. Eliminated as long as you can visualize the tumor on the image
C. Eliminated as long as you can visualize the tumor and breathing motion is suspended
D. Reduced, but uncertainties (in processes such as image registration and corrections) but still be taken into account
E. Daily image guidance does not impact the planning target volume
1. Daily image guidance allows the planning target volume to be

A. Eliminated as long as you can visualize bony anatomy on the image
B. Eliminated as long as you can visualize the tumor on the image
C. Eliminated as long as you can visualize the tumor and breathing motion is suspended

D. Reduced, but uncertainties (in processes such as image registration and corrections) but still be taken into account

E. Daily image guidance does not impact the planning target volume

Marcel van Herk, Different Styles of Image-Guided Radiotherapy, Seminars in Radiation Oncology, 17(4), October 2007, 258-267
Image Guidance Strategy
Purpose of Image Guidance

- Localize reference position of tumor and surrounding anatomy
 - Breath hold treatment
 - Free breathing treatment
- Verify breathing motion or stability of breath hold
- Verify correlation with tracking/gating system
Where’s the tumor?
IGRT on an Invisible Tumor

Planning CT [w contrast]

CBCT [w/o contrast]

Resolve Geometric discrepancies

New Tumor Position!
Accurate Tumor Guidance
12 Liver Patients: 6 Fx Each
Rigid Reg → Deformable Reg

<table>
<thead>
<tr>
<th>Δ Tumor</th>
<th>dLR</th>
<th>dAP</th>
<th>dSI</th>
<th>abs(dLR)</th>
<th>abs(dAP)</th>
<th>abs(dSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>-0.04</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.08</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>SD</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
<td>0.07</td>
<td>0.11</td>
<td>0.17</td>
</tr>
<tr>
<td>Max</td>
<td>0.27</td>
<td>0.43</td>
<td>0.97</td>
<td>0.34</td>
<td>0.65</td>
<td>0.97</td>
</tr>
<tr>
<td>Min</td>
<td>-0.34</td>
<td>-0.65</td>
<td>-0.70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Median</td>
<td>-0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

- 33% (4/12) Patients had at least 1 Fx with a ΔCOM of > 3 mm in one direction
- 15% of Fx had a ΔCOM of > 3 mm in 1 dir.
Daily Treatment Verification with Cone Beam imaging
CBCT Target Localization (1)
Free Breathing IGRT

- Match tumor/critical organs at reference phase
- Ensure consistent breathing motion/coverage of PTV
Strategies to consider breathing motion Wuerzburg

IGRT of liver tumors using 4D planning and free breathing

CBCT: Liver outline as surrogate

Motion amplitude

Guckenberger et al, IJROBP, 2008
Strategies to consider breathing motion Wuerzburg

Contour matching for IGRT of liver tumors

Challenges:

– Inhale an exhale ‘contours’ on free breathing CBCT not always clear

- Amplitude of breathing may change → then what is the best strategy for matching? → respiratory correlated CBCT and matching

Guckenberger et al, IJROBP, 2008
Stereotactic body-radiotherapy of liver tumors

Contour matching for IGRT of liver tumors

<table>
<thead>
<tr>
<th></th>
<th>GME</th>
<th>Σ</th>
<th>σ</th>
<th>Margin</th>
<th>Mean</th>
<th>SD</th>
<th>Max. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>-1.4</td>
<td>3.5</td>
<td>2.4</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>-1.8</td>
<td>4.3</td>
<td>6.4</td>
<td>15.2</td>
<td>3D</td>
<td>8.2</td>
<td>3.8</td>
</tr>
<tr>
<td>AP</td>
<td>-0.2</td>
<td>4</td>
<td>4.3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>1.2</td>
<td>1.6</td>
<td>1.6</td>
<td>5</td>
<td>3D</td>
<td>5.2</td>
<td>2.2</td>
</tr>
<tr>
<td>SI</td>
<td>-0.5</td>
<td>2.6</td>
<td>4.2</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>1.7</td>
<td>3.2</td>
<td>1.8</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
‘4D’ Cone-beam CT from a Single Gantry Rotation

Image-based projection sorting for 4D cone-beam CT

~650 projections over 360°
Acquisition Time

4D CBCT

Slow acquisition (4 min) Fast acquisition (1 min)

JJ Sonke, Netherlands Cancer Institute
Motion compensated CBCT

Non-corrected vs. Motion-compensated

Reconstruction keeps up with image acquisition

Slow acquisition (4 min)

Fast acquisition (1 min)

JJ Sonke, Netherlands Cancer Institute
CBCT – Reconstruction Comparison

Free Breathing

- 325 Projections
- 120 kVp
- 2.6mAs/projection

Expiration Sorted

- 68 Projections
- (Amplitude sorted <10%)
- 120 kVp
- 2.6mAs/projection
Verification of Range of Respiratory Motion at the Treatment Unit

Sample Case

<table>
<thead>
<tr>
<th></th>
<th>Tumour Excursion (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lateral</td>
</tr>
<tr>
<td>4DCT Planning Scan</td>
<td>0.7</td>
</tr>
<tr>
<td>Respiration Correlated CBCT</td>
<td></td>
</tr>
<tr>
<td>Fraction 1</td>
<td>0.5</td>
</tr>
<tr>
<td>Fraction 2</td>
<td>0.3</td>
</tr>
<tr>
<td>Fraction 3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Verification of Position and Amplitude of Respiration for Margin QA
Verification of Range of Respiratory Motion at the Treatment Unit

The difference in tumour motion between planning and treatment for 12 patients treated using SBRT.

Purdie et al., Acta Oncologica
Respiratory Sorted Cone Beam CTs
– software courtesy of Sonke et al, NKI

- Intra & inter fraction variability in liver motion amplitude << baseline inter-fraction shifts in liver position
- 90% of amplitude change < 4 mm

Free Breathing CBCT
Exhale
Inhale

Cranial-caudal amplitude (mm)

R Case, ASTRO 2007
3D Registration Error: Lung

JJ Sonke, Netherlands Cancer Institute
Soft Tissue IGRT

- Mean (90th percentile) differences in liver position from automated CT\textsubscript{e}xh to CBCT\textsubscript{e}xh registration

<table>
<thead>
<tr>
<th></th>
<th>Manual</th>
<th>Automated</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CT\textsubscript{e}xh-CBCT\textsubscript{e}xh*</td>
<td>CT\textsubscript{e}xh-CBCT</td>
<td>CT\textsubscript{e}xh-CBCT**</td>
</tr>
<tr>
<td>ML (mm)</td>
<td>0.5 (2.4)</td>
<td>1.0 (3.5)</td>
<td>0.3 (4.6)</td>
</tr>
<tr>
<td>CC (mm)</td>
<td>0.6 (3.0)</td>
<td>0.2 (2.9)</td>
<td>3.0 (7.6)</td>
</tr>
<tr>
<td>AP (mm)</td>
<td>1.2 (4.2)</td>
<td>0.8 (5.4)</td>
<td>1.7 (6.0)</td>
</tr>
</tbody>
</table>

Rob Case, ASTRO poster discussion 2008
Manual vs Automated Liver Alignment

- Correlation automated & manual CTexh-CBTCexh registration >> free breathing CT-CBCT registration
- Automated faster and more reproducible
- Visual confirmation of registration required

Rob Case, ASTRO poster discussion 2008
Dosimetric Implications
Motivation

• Tumor dose-response observed for liver SBRT

• Iso-NTCP dose-allocation at Princess Margaret CC
 – ↓ toxicity, no radiation-induced liver disease
 – 85% receive < maximum dose

• Internal Target Volume (ITV) results more normal tissue irradiation than dose-probability PTV*
 *Requires mean position

• Poor liver tumor contrast on 4D imaging

Free-breathing CBCT
To investigate the impact of PTV reduction on both the planned and delivered doses in free-breathing liver SBRT, using:

- Mean respiratory liver position
- Dose-probability PTV margins
Materials and Methods

- 18 previous SBRT patients with 30 GTVs
 - 8 liver metastases, 10 primary liver cancer
- 27–49.8 Gy/ 6 Fx, planned on exhale 4D CT
 - AVG 4D CT motion (mm) : 10, Range: 3 – 19
 - ITV-based PTV: 4D CT, cine-MR, fluoroscopy
- IGRT based on rigid liver alignment on free-breathing 360° 3D CBCT
- Delivered dose reconstructed with biomechanical deformable image registration (Morfeus) and retrospectively sorted 4D CBCT
 - Pinnacle³ dose interpolated onto finite element model, and accumulated over 6 fractions
Materials and Methods

- Re-planned on the mid-position (MidP) CT
- Dose-probability PTV ensures 90% of patients receive 90% dose (Van Herk. IJROBP. 2000):
 \[\text{Margin} = 2.5 \Sigma + 1.28(\sigma - \sigma_{\text{penumbra}}) \]
- \(\Sigma \) includes:
 - Inter - Fx (liver vs. GTV centre of mass)
 - Intra - Fx (pre- vs. post-treatment liver position)
 - Morfeus accuracy
- \(\sigma \) additionally includes:
 - 0.36 x GTV amplitude (modeled with Morfeus on 4D CT)
 - Penumbra in water
- Escalated up to 60Gy/6 Fx, iso-NTCP < 10%
Methods and Materials

i. Deform Exhale \rightarrow Inhale

E.g. 4D CT motion:
17 mm
12 mm
6 mm

ii. Apply 43% of deformation to Exhale CT = MidP CT

iii. GTV error MidP CT vs. time-weighted mean, AVG (Max):
0.8 ± 0.4 (1.5) mm
Methods and Materials

i. Deform Exhale → Inhale

ii. Determine time-weighted mean liver position across all 4D phases:

iii. Apply as % to Exhale-Inhale CBCT deformation map = MidP CBCT
Methods and Materials

- Exhale 4D CT
- Inhale 4D CT
- MidP CT
- Exhale 4D CBCT
- Inhale 4D CBCT
- Shift 4D CBCT model to correct mean liver Δ

Inhale 4D CT → Exhale 4D CBCT
MidP CT → MidP CBCT
Methods and Materials

Shift 4D CBCT model to correct mean liver Δ
Results – Planned Dose

MidP CT vs. Exhale CT plans:

• Δ GTV-PTV volume, -68 ± 49 cc (maximum↓: -216 cc)
 – -34 ± 11% (max: 58%)

• Δ PTV-D_{99\%}, 4.5 ± 3.5 Gy (maximum↑: 18.6 Gy)
 – 14 ± 13 % (max: 65%)
 – Δ 11/30 GTVs > 5 Gy

• Normal tissue-PTV overlap:
 – AVG Δ PTV-D_{99\%} no overlap vs. overlap: 1.7 vs. 6.8 Gy
 – All normal tissues met constraints
Results – Delivered Dose

Exhale CT plan + 3D CBCT:
100% patients’ GTV-D_{min} > PTV-$D_{99\%}$

MidP CT plan + 4D CBCT:
94% patients’ GTV-D_{min} > PTV-$D_{99\%}$
Results – Delivered Dose

Outlier patient, with 3 GTVs:
- 8 mm more motion on 4D CBCT vs. 4D CT
- 4º liver rotation on 4D CBCT
- 3D inter-fraction error (μ) after rigid liver alignment:
 - GTV1: 5 mm
 - GTV2: 9 mm
 - GTV3: 7 mm
- $\text{GTV2-D}_{\text{min}}$ vs. PTV2-D_{99}: -3.3 Gy (6.8% decrease)
Results – Delivered Dose

- Delivered Vs. Planned D_{max} for luminal G.I. tissues
 - Within 2 Gy of planning dose constraint

<table>
<thead>
<tr>
<th>Plan Type</th>
<th>Δ Delivered Vs. Planned D_{max}, AVG (Range)</th>
<th>No. with delivered $D_{\text{max}} >$ constraint (Max. magnitude)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhale CT plan + 3D CBCT</td>
<td>-0.9 Gy (-5.0, 1.9 Gy) -3 % (-14, 6%)</td>
<td>3 tissues (1.4 Gy, or 6%)</td>
</tr>
<tr>
<td>MidP CT plan + 4D CBCT</td>
<td>-0.5 Gy (-2.4, 0.4 Gy) -2 % (-8, 1)</td>
<td>1 tissue (0.1 Gy, or 1%)</td>
</tr>
</tbody>
</table>
Conclusions

• Deformable dose reconstruction was used to model the delivered dose following PTV ↓
 – Role for routine QA of SBRT delivery in clinic

• Liver SBRT at the mean respiratory position, coupled with dose-probability PTV, allows for a planned dose escalation of 4.5 Gy/6 Fx
 – 94% (17/18) of patients received the planned dose with 4D CBCT and rigid liver registration

• Ongoing work: evaluate IGRT strategies at the mean respiratory position
2. Using dose probability based planning target volume margins for liver SBRT compared to an ITV-based approach

A. Enables planning with a 0 PTV margin
B. Enables an average 38% reduction of the PTV while maintaining minimum delivered dose to the GTV
C. Should only be used if real-time monitored is employed during treatment
D. Should only be used with implanted fiducials and with daily MR guidance
E. Has been shown to dramatically increase in-field recurrence
2. Using dose probability based planning target volume margins for liver SBRT compared to an ITV-based approach

A. Enables planning with a 0 PTV margin

B. Enables an average 38% reduction of the PTV while maintaining minimum delivered dose to the GTV

C. Should only be used if real-time monitored is employed during treatment

D. Should only be used with implanted fiducials and with daily MR guidance

E. Has been shown to dramatically increase in-field recurrence

Summary

• Uncertainties exist throughout the SBRT planning and delivery process
• Advances in imaging and image integration (e.g. DIR) help to reduce these uncertainties
• Reducing/eliminating uncertainties in image acquisition is key to the accurate delivery of SBRT dose
• Novel developments of SBRT margins can enable decreases in normal tissue while maintaining tumor dose.