Battling Maxwell's Equations Physics Challenges and Solutions for Hybrid MRI Systems

PAUL KEALL, BRENDAN WHELAN and BRAD OBORN Representing The Australian MRI-Linac Program Team

THE UNIVERSITY OF QUEENSLAND

Disclosures

- > Patents: Awarded and pending
- Licenses: Nano-X, Respiratory Innovations, Standard Imaging, Varian
- **Grants:** Philips (Co-Investigator), Varian (Co-I)
- > Ownership: Cancer Research Innovations, Nano-X, Respiratory Innovations

http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php

Introduction

MAXWELL'S EQUATIONS IN FREE SPACE (in SI units)		
LAW	DIFFERENTIAL FORM	INTEGRAL FORM
Gauss law for electricity	$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} = 4\pi k\rho$	$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$
Gauss law for magnetism	$\nabla \cdot \vec{B} = 0$	$\oint \vec{B} \cdot d\vec{A} = 0$
Faraday's law of induction	$\nabla \mathbf{x} \vec{E} = -\frac{\vec{\partial B}}{\partial t}$	$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$
Ampere's law	$\nabla \mathbf{x} \ \vec{B} = \frac{\vec{J}}{\varepsilon_0 c^2} + \frac{1}{c^2} \frac{\vec{\partial E}}{\vec{\partial t}}$	$\oint \vec{B} \cdot d\vec{s} = \mu_0 i + \frac{1}{c^2} \frac{\partial}{\partial t} \int \vec{E} \cdot d\vec{A}$
NOTES: E - electr k - Boltzmann's co current, c ≈ 299 792 458 m is a vector function	ic field, ρ - charge density, $\epsilon_0 \approx 8.85 \times 10^{-12}$ onstant, q - charge, B - magnetic induction n/s - the speed of light, $\mu_0 = 4\pi \times 10^{-7}$ - magnetic induction n, then $\nabla \cdot \mathbf{V}$ is divergence of V , $\nabla \times \mathbf{V}$ is th	² - electric permittivity of free space, π ≈ 3.14159, , Φ - magnetic flux, J - current density, i - electric gnetic permeability of free space, ∇ - del operator (if V le curl of V).

http://www.smps.us/electrical-engineering.html

Maxwell's equations describe which forces?

- A. Electric and gravitational
- B. Electric and magnetic
- C. Gravitational and magnetic
- D. Nuclear strong and weak

Maxwell's equations describe which forces?

- A. Electric and gravitational
- B. Electric and magnetic
- C. Gravitational and magnetic
- D. Nuclear strong and weak

Ref: Classical Electrodynamics. Jackson (3rd edition). Free download!

Magnetic field effects on the linac electron gun

MRI field for a 1T split bore design

Electron Gun

Impact of B fields on unshielded guns

Constantin Med Phys 2011

THE UNIVERSITY OF

Inline (B_0 || electron beam) and perpendicular (B_0] electron beam) magnetic fields affect linac electron guns by:

67%	Α.	Inline fields affect the beam focus; perpendicular fields deflect the electrons away from the anode
21%	B.	Inline fields deflect the electrons away from the anode; perpendicular fields affect the beam focus
7%	C.	Inline fields and perpendicular fields affect the beam focus
5%	D.	Inline fields and perpendicular fields deflect the electrons away from the anode

Inline $(B_0 \parallel \text{electron beam})$ and perpendicular $(B_0 \parallel \text{electron beam})$ magnetic fields affect linac electron guns by:

- A. Inline fields affect the beam focus; perpendicular fields deflect the electrons away from the anode
- B. Inline fields deflect the electrons away from the anode; perpendicular fields affect the beam focus
- C. Inline fields and perpendicular fields affect the beam focus
- D. Inline fields and perpendicular fields deflect the electrons away from the anode
- Ref: Constantin, D. E., Fahrig, R., & Keall, P. J. (2011). A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators. Med Phys, 38(7), 4174-4185.

Magnetic field effects on the linac waveguide

An example accelerator

Electron transport in a linac

Courtesy Brendan Whelan

Electrons in a linac: B = 0.05T perp.

Courtesy Brendan Whelan

Magnetic field effects on treatment head/patient radiation transport

Skin dose in magnetic fields

Inline ($B_0 \parallel$ electron beam) and perpendicular ($B_0 \perp$ electron beam) magnetic fields affect the transport of electrons generated in the treatment head and air column. Which of the following statements is correct?

A. Inline and perpendicular fields both decrease the skin dose

- B. Inline and perpendicular fields both increase the skin dose
- 20% C. Inline fields decrease the skin dose and perpendicular fields increase the skin dose
- 57% D. Inline fields increase the skin dose and perpendicular fields decrease the skin dose
- E. The magnetic field has no effect on the skin dose

Note: || = parallel; | = perpendicular, orthogonal

Inline ($B_0 \parallel$ electron beam) and perpendicular ($B_0 \perp$ electron beam) magnetic fields affect the transport of electrons generated in the treatment head and air column. Which of the following statements is correct?

- A. Inline and perpendicular fields both decrease the skin dose
- B. Inline and perpendicular fields both increase the skin dose
- C. Inline fields decrease the skin dose and perpendicular fields increase the skin dose
- D. Inline fields increase the skin dose and perpendicular fields decrease the skin dose
- E. The magnetic field has no effect on the skin dose

Linac effects on the magnetic field

MLCs are magnetic

Impact of MLCs on magnetic uniformity

Setup

Agilent split-bore MRI magnet

SID: Source-to-isocentre distance

Kolling Med Phys 2013

- B₀ = 1.0 T
- Two beam orientations

Impact of MLCs on magnetic uniformity

MRI imaging volume

THE UNIVERSITY OF

Kolling Med Phys 2013

The main effect that the ferromagnetic materials in the linac have on the MRI operation is in the:

The main effect that the ferromagnetic materials in the linac have on the MRI operation is in the:

- A. Gradient system
- B. Magnetic field uniformity
- C. Power system
- D. Cooling system
- E. Radiofrequency system

Summary

Bjerre Phys Med Biol 2013

- > MRI physics and engineering is challenging
- > Linac physics and engineering is challenging
- >MRI-Linac physics and engineering is challenging²
- Is it worth it?
 - Anatomy
 - Physiology
 - Beyond oncology

