

Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and kV Tracking

Benjamin P. Fahimian, PhD, DABR*

Clinical Assistant Professor, Department of Radiation Oncology, Stanford University fahimian@stanford.edu

*Disclosures: Research funding support by Varian Medical Systems

Motivation

- Target motion is a major complicating factor in the accurate delivery of radiation within the body
- Targets must not only be localized in *space* but also in *time*, *i.e. space-time*

Videos of thoracic target motion. Courtesy of R. Li

Fahimian // AAPM 2015 // Slide 2

Motivation: Range of Tumor Motion

1 cm	R ab 7	TABLE II. Abdominal motion data. The mean range of motion and the (minimum-maximum) ranges in millimeters for each site and each cohort of subjects. The motion is in the superior-inferior (SI) direction.			
20/ 100/200	A CARE			Breathing mode	
16 14 17 11 15	15 14 4 2. 16	Site	Observer	Shallow	Deep
Way (1) 16 2 113	a 13 a 13	Pancreas	Suramo (Ref. 57)	20 (10-30)	43 (20-80)
A Start			Bryan (Ref. 59)	20 (0-35)	-
1 B X T Roll 1		Liver	Weiss (Ref. 66)	13±5	-
22	13 19 122		Harauz (Ref. 67)	14	-
6) IN			Suramo (Ref. 57)	25 (10-40)	55 (30-80)
	5 1023 (18) 17 18 8		Davies (Ref. 58)	10 (5-17)	37 (21–57)
21 23 10 (20)	201	Kidney	Suramo (Ref. 57)	19 (10-40)	40 (20-70)
AB ANA	21 10		Davies (Ref. 58)	11 (5–16)	-
		Diaphragm	Wade (Ref. 68)	17	101
Attached AP			Korin (Ref. 64)	13	39
	Z]	Davies (Ref. 58)	12 (7-28)	43 (25-57)

Tumor trajectories of 23 patients, using tracking of implanted fiducials. Seppenwoolde, et al., 2002

Sources of motion other than respiratory:

• Cardiac

- Skeletal Muscular
 - Gastrointestinal

Introduction: Image Guidance

- Variety of delivery techniques:
 - Motion-encompassing irradiation
 - Compression
 - Breath-hold
 - Gating
 - Dynamic tracking delivery

Importance of intrafractional image-guidance and tracking

Fahimian // AAPM 2015 // Slide 4

Survey of Imaging Techniques: Historical Trend

Survey of Imaging Techniques: Summary

	Method	Examples	Advantages	Disadvantages	
\longrightarrow Me _i	Megavoltage imaging	Electronic portal imaging device	Available on most linacs	Poorer contrast than kV	
			Imaging coordinate system same as treatment coordinate system	For modulated IMRT fields can only see part of anatomy	
			Can perform fluoroscopy and CBCT		
\longrightarrow	kV imager	Dual imagers on Novalis, Cyberknife, Vero; single imagers on Elekta, Siamens, Varian	Higher contrast than MV	Requires additional imaging dose	
			Can image independently of treatment beam		
		linacs	Can perform fluoroscopy and CBCT		
	Optical imaging Brain Visio	Brainlab, Varian RPM, VisionRT	Surface information without radiation dose	As sole modality cannot determine internal target positions	
			Can be combined with other internal positioning methods		
\longrightarrow	Radio-frequency	Calypso, Micropos, Radpos	High accuracy	Only information about individual points	
			High frequency	Requires implantation. Severe MRI artifacts.	
	γ-ray	Navotek	High accuracy	Additional radiation dose	
			High frequency	Requires implantation	
	Ultrasound	Nomos, Resonant	Volumetric images	Poorer image quality	
			No implanted markers	Limited to some anatomic sites	
	Magnetic	IMRIS, U Alberta, U	Volumetric imaging	Mutual compatibility with linac	
\longrightarrow	imaging	Utrecht, Viewray	No implanted markers	Cost	

Fahimian // AAPM 2015 // Slide 6

Li, Keal, Xing, Linac-Based Image Guided Intensity Modulated Radiation Therapy, Springer, 2011

Tracking on Commercial Systems

Survey of Commercial Systems with Intrafractional Motion Imaging (a) TrueBeam STx (d) CyberKnife robotic system (c) VERO gimbaled system (d) ViewRay MR guided system (Images courtesy of Varian, BrainLab, Accuray, ViewRay)

Outline of Symposium

Kilovoltage Imaging

 Capabilities: kV planer (stereoscopic and monoscopic), kV fluoro, kV volumetric guidance (CBCT, 4D-CBCT, gated CBCT), triggered during treatment imaging

- Advantage: Better contrast / image quality (photoelectric interactions) than MV, triggered imaging independent of beam, flexibility and availability
- Disadvantage: Imaging dose, different isocenter than treatment beam, scatter / HU inaccuracy in volumetric implementations

Fahimian // AAPM 2015 // Slide 9

Combination with Optical Imaging

- Capabilities: tracking of patient surface or external markers
- Advantage: No imaging dose, continuous tracking of surface or surrogate
- Disadvantage: Cannot determine internal motion
- Utility: Combine with other techniques such as periodic xray imaging to correlate external with internal motion.
 Gate and track based on optical signal.

Fahimian // AAPM 2015 // Slide 10

Tracking Techniques

- Fiducial based techniques
 - Passive ficucials:
 - Gold markers and coils
 - Stents
 - Surgical clips
 - Active fiducials:
 - Radiofrequency (Calypso)
 - γ-ray (Navotek)
- Fiducial-less tracking:
 - Anatomical landmarks e.g., diaphragm, GTV

Tracking Techniques: Stereoscopic vs. Monsocopic

- Stereoscopic: two images from different directions
 - Floor mounted (robust decoupling of treatment head and imaging) examples: CyberKnife, BrainLab ExacTrac
 - Ring mounted (Vero)
 - Triangulation used to determine 3D target position
- Monoscopic: image from a single direction.
 - Example: Conventional linac OBI

- Tracking Techniques: Triangulation in Stereoscopic Imaging
- Triangulation:3D position of point like objects can be estimated using backprojection of two images at different angles

Tracking: Correlation Based Techniques

CyberKnife Synchrony

- External surrogates continuously tracked
- Periodic x-ray stereoscopic imaging of target Correlation model used between external surrogate and internal target motion
- Dynamic tracking delivery using correlation model
- Advantage: lower imaging dose relative to RTRT Disadvantage: based on model estimate with limitations accuracy limitations

Tracking: Stereoscopic Correlation Based Techniques

Fahimian // AAPM 2015 // Slide 16

Cho, et al., Phys. Med. Biol. 55 (2010) 3299–3316

- First in-human radioablation of ventricular tachycardia (25 Gy in 1 to 75% isodose line)
- Temporary fiducial (pacing wire) placed on the ventricular for tracking
- Continuous tracking of three LED markers, in conjunction with the time-dependent radiographic fiducial positions

Figure 1. Stereotactic arrhythmia radioablation (STAR) treatment plan. A, Simulated cardiac ablation contours (dark blue); B and C, Final target volume (blue/yellow) treated with 25 Gy (Green isodose line) with higher dose (Red 29 Gy isodose line) centered within the mid-myocardial layer.

Cardiac Tracking: Stereotactic Arrhythmia Radioablation (STAR)

- Correlation models guide robot's compensation of the first-order target motion due to respiration
- 178 stereoscopic images defining the true target position with the 496 model points
- Mean radial 3D was 3.2 mm with a standard deviation of 1.6 mm
- 90% of points had less than 5.5 mm radial deviation

Tracking Techniques: Monsocopic

- Monoscopic: image from a single direction.
 - Example: Conventional LINAC on-board imager

Fig.10b. Image quality obtained through fluoroscopic imaging when MV beam is on. The kV X-ray source

was blocked.

MV are on simultaneously

SAMS Question

An intrafractional monoscopic image from a kilovoltage on-board imager can be used to

- A. Determine the 3D position of targets
- B. Image the beam's eye view during delivery
- C. Verify the expected 2D positions of targets at particular points in the respiratory cycle
- D. Provide superior localization relative to stereoscopic images
- E. Readily visualize soft tissue targets

SAMS Question

An intrafractional monoscopic image from a kilovoltage on-board imager can be used to

- A. Determine the 3D position of targets
- B. Image the beam's eye view during delivery
- C. Verify the expected 2D positions of targets at particular points in the respiratory cycle
- D. Provide superior localization relative to stereoscopic images
- E. Readily visualize soft tissue targets

Ref: Dieterich, Fahimian, "Stereotactic and Robotic Radiation Therapies", Ch. 5, V. 3, The Modern Technology of Radiation Oncology, Van Dyk, 2013

Tracking Techniques: Monsocopic

- Monoscopic: image from a single direction.
 - Example: Conventional LINAC OBI

- How do you deal with depth ambiguity
 - Option 1: Sequence of images + modeling
 - Option 2: Tomosynthesis of images from different angles
 - Option 3: Don't! Use for 2D beam level verification only

Tracking Techniques: Monoscopic Tracking (Option 1)

4209 Li, Fahimian, and Xing: A Bayesian approach to real-time 3D tumor localization

Monoscopic tracking:

Solid line = true tumor motion, estimated motion is shown in stars (p=2) and circles (p=0.1)

- A priori probability density function is from projection images acquired during patient setup
- Update likelihood function from beam-level images $L(\mathbf{x}) = f(\mathbf{c}_k | \mathbf{x}) = \alpha \cdot \exp\left[-||T_k(\mathbf{x}) - \mathbf{c}_k||_2^p / \beta_k^p\right]$
- 3D position by maximizing posterior probability distribution

Tracking Techniques: Digital Tomosynthesis (Option 2)

Intrafraction fluoro: individual frames DTS images constructed using sliding 30-deg arc

IntraFx images courtesy of B. Loo, Jr, Stanford

- Reconstruction of intrafractional fluoroscopic images during arc delivery
- Advantages: Potential for markerless tracking, and more robust localization
- Disadvantages: Not truly real-time, dose from multiple projections

Fahimian // AAPM 2015 // Slide 25

Other References: Godfrey et al., Digital tomosynthesis with an on-board kilovoltage imaging device, IJRBP 2006

Beam-Level Imaging: Software Markers

- Software Markers can be placed at time of planning to delineate intended fiducial position
- Placed at location of approximate phase that beam-level imaging occurs.
- Alternatively, placement could indicate boundaries of motion
- Example: if gating 30-70%, and beam-level imaging prior to gate, place markers at the locations corresponding to the 30% 4DCT set

Fahimian // AAPM 2015 // Slide 26

Beam-Level Imaging During Gated Delivery

Gantry Trajectory During Gated VMAT Delivery

- Gantry rolls back and forth during gated VMAT
- Beam-level images taken prior to each gate
- Software markers projected on beam-level images

Images courtesy of R. Li

Fahimian // AAPM 2015 // Slide 27

Beam-Level Imaging: Intrafraction Motion Verification

Fahimian // AAPM 2015 // Slide 28

Li, et al., Int J Radiation Oncol Biol Phys, Vol. 83, 2012

Beam Level Imaging: Accuracy

Table 2

	Mean (mm)					
Patient index	LR	AP	SI	3D		
1	0	0	0.7	0.7		
2	0.7	0.5	0.5	1.4		
3	0.2	0.6	0.1	0.7		
4	0	0.1	1.3	1.3		
5	1.1	0.3	0.1	1.2		
6	0.5	0.2	0.7	1.0		
7	0	0.1	0.8	0.9		
8	1.3	0	0.4	1.6		
9	0	0.1	1.1	1.1		
10	0	0	0	0		
11	0	0.1	0	0.1		
12	0	0.8	1.5	1.7		
13	0	0.1	0.8	0.9		
14	0.1	0.5	0.4	0.7		
15	0.1	0	0.5	0.5		
16	0.1	0	0	0.1		
17	0	0	0.1	0.1		
18	0.1	0.6	0.4	0.9		
19	0	0	0.2	0.2		
20	0	0	0.3	0.3		
Population	0.2 ± 0.4	0.2 ± 0.3	0.5 ± 0.4	0.8 ± 0.5		

Distance between markers and their ITVs

Abbreviations: AP = anterior-posterior; LR = left-right; SI = superior-inferior.

3D position (circles) of markers estimated from the beam-level kV images during gated VMAT. Horizontal line = reference position on planning CT

Planar radiographic image entrance dose levels per intrafractional image range from

20%	A. 0.01-0.05 mGy	
38%	B. 0.25-0.5 mGy	
30%	C. 1-5 mGy	
10%	<mark>D. 10</mark> -50 mGy	
2%	E. 50-100 mGv	

SAMS Question

Planar radiographic image entrance dose levels per intrafractional image range from

- A. 0.01-0.05 mGy
- B. 0.25-0.5 mGy
- C. 1-5 mGy
- D. 10-50 mGy
- E. 50-100 mGy

Ref: "The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75", Med. Phys. 34 (10), 2007

Imaging Dose: CK and Brainlab Examples

TABLE I. Measured planar radiographic entrance dose levels per image for the CyberKnife image-guided radiosurgery system.

Site	kV	mA	ms	mAs	mGy
Cranium and C-spine	105-125	100	100	10	0.25
T-spine	120-125	100-150	100-125	10-20	0.25-0.50
L-spine	120-125	100-200	100-150	10-30	0.25-0.75
Sacrum	120-125	100-300	100-300	10-90	0.25-2.00
Synchrony	120-125	100-300	50-75	5-22.5	0.10-0.50

TABLE II. Measured planar radiographic entrance dose levels for the Brain-Lab Novalis image-guided radiosurgery system [from the Henry Ford Hospital (Ref. 27)].

Site	kV	mA	ms	mAs	mGy
Cranium and C-spine	120	125	100	12.5	0.335
Body	140	125	125	15	0.551

• Combined with continuous surrogate tracking to allow to limit dose

• Motivation for emphasis on alternative techniques for the remainder of Symposium

