Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

Daniel A. Low, Ph.D Professor and Vice Chair of Medical Physics UCLA Radiation Oncology

Outline

- Current MR+RT projects
- Methods for real-time imaging
- Process for object tracking
- Clinical examples
- Next steps

MR-IGRT (MRIdian by ViewRay)

- 0.35T MRI
- 3 Co-60 heads
 ~550 cGy/min @ iso
- Each head is equipped with divergent MLCs
- Large imaging FOV (50 cm)
- Integrated planning system
 - Monte Carlo dose calculation

MR-IGRT (MRIdian by ViewRay)

Elekta + Philips

Upgrading the Prototype

Courtesy Raaymakers

Courtesy Raaymakers

MRI of Pancreas, Optical Flow for 4D Motion Quantification

Courtesy Bjorn Stemkens, Baudouin Denis de Senneville

SITEMAN CANCER CENTER

MR-IGRT Workflow

Courtesy of Olga Green

Pancreas IMRT with breath hold gating

Superior

Anterior

Inferior

Sagittal View

Stereotactic Liver Radiation Diagnostic T1 weighted Gadoxetic acid contrast enhanced MRI of Metastatic Colorectal Cancer

Stereotactic Ablative Liver Metastasis Radiation

50Gy in 5 Fx

MRI Tracking During Treatment

Superior

Patient driven repeated breath-hold technique with a high duty cycle

Radiation beam is only on when tumor is in proper position

Contrast used to highlight the tumor and allow daily tracking

Unique to be able to see and track actual tumor (not a surrogate) in realtime

Superior Pole Kidney SBRT

Superior Pole Kidney SBRT

- Tumor tracking required to spare uninvolved kidney
- Tracking algorithm works very well with nice contrast difference
- Track the entire kidney with 98% within PTV for beam on

Patient Coached To Correct Amplitude

Exhalation Gating

Isodose Lines Max Dose = 65.00 Gy Rx Dose = 50.00 Gy

Dose (Gy)	Rx %	Visible		
12.50	25.0	Yes		
25.00	50.0	Yes		
30.00	60.0	Yes		
40.00	80.0	Yes		
45.00	90.0	Yes		
47.50	95.0	Yes		
52.50	105.0	Yes		
50.00	100.0	Yes		

Courtesy John Bayouth

Contrast for Visualization

Key Frame Needs To Match Gating Phase

Gating and Tracking with Prototype MRL

Quality Assurance: ViewRay

- System Latency
- Trigger beam hold within 500 msec of target moving outside pre-defined boundary

Courtesy John Bayouth

CIRS MR-compatible Motion Phantom

Moving Part of Phantom Carbon Fiber rod Internal envelope of ViewRay system magnets (for illustration purposes only)/ Actuator - MRI Moving Rod shaft connector (two pieces connected with Linear Motor bridges) Assembly Sensor Assembly MRI Body Position (Shown with ViewRay Torso Coils and Sensor MRI Body/Coils support) Connection ViewRay system couch (for illustration purposes only) CIRS model 008A Linear Actuator Courtesy Olga Green custom mounted on modified 008A

SITEMAN CANCER CENTER

Base Plate

Verification of Dose during MRTC

Courtesy John Bayouth

Courtesy Olga Green

What's Next?

- 3D real time imaging
- Volume of data
- Real time review and monitoring by therapists?

MR-Based Tracking

4%	Α.	Is not yet feasible due to the challenges in programming pulse sequences
5%	Β.	Is feasibly only for very high magnetic field strengths (<3T) due to signal to noise issues
0%	C.	Does not benefit patients because x-ray tracking is commonplace and easy
1%	D.	Unlike the claims made by MR manufacturers, delivers ionizing dose to the patient
90%	E.	Is one of the more important features of MR-guided RT

SAMS Question

MR-Based Tracking

- A. Is not yet feasible due to the challenges in programming pulse sequences
- B. Is feasibly only for very high magnetic field strengths (<3T) due to signal to noise issues
- C. Does not benefit patients because x-ray tracking is commonplace and easy
- D. Unlike the claims made by MR manufacturers, delivers ionizing dose to the patient
- E. Is one of the more important features of MR-guided RT

Mutic and Dempsey, Seminars in Rad. Onc. 196-199 (2014)

MR Based Tracking

- A. Has no role in radiation therapy
- B. Is available only on diagnostic MR units and therefore will provide no benefit to radiation therapy
- C. Has the potential for providing more accurate treatments and ultimately reduced margins
- D. Will result in increased margins due to challenges with sequence synchronization
- E. Is so theoretical that we will not see it made practical in our lifetimes

SAMS Question

MR Based Tracking

- A. Has no role in radiation therapy
- B. Is available only on diagnostic MR units and therefore will provide no benefit to radiation therapy
- C. Has the potential for providing more accurate treatments and ultimately reduced margins
- D. Will result in increased margins due to challenges with sequence synchronization
- E. Is so theoretical that we will not see it made practical in our lifetimes

Mutic and Dempsey, Seminars in Rad. Onc. 196-199 (2014)

Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

Daniel A. Low, Ph.D Professor and Vice Chair of Medical Physics UCLA Radiation Oncology