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Describe the motivation for integrating imaging with genomic

and clinical data

Describe robust methodology underlying quantitative radiomic
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Describe biomarker quantification studies in Radiomics and

Imaging-Genomics (Radiogenomics)

Imaging for personalized medicine

Advantages of Imaging:
Performed non-invasively
Covers the total 3D volume
Already performed in clinical practice

Multiple times during treatment for diagnosis, staging, radiation oncology
planning, response assessment

Disadvantages of Imaging:
Probes the cancer at the macroscopic level
Often qualitative not quantitative
Very heterogeneous acquisition protocols:
comparisons between patients difficult
comparisons same patient in time difficult
Storage of only reconstructed images (not the raw data)




Representative CT images of lung cancer

Tumors are different
Medical imaging can capture these phenotypic differences

Integrating Imaging and Genomic Data

Radiomic Data
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Integrating Tissue Imaging data with the underlying Biology




Radiomics rational

Radiographic images are typically analysed qualitatively by radiologist,
often with non-standard lexicon.

At most, unidirectional measurements (RECIST)

Radiomics aims to provide a comprehensive quantification of the tumor
phenotype using automated image characterisation algorithms

We hypothesize that radiomic analyses of standard of care images can
improve diagnostic, prognostic and predictive power

Automation is key: automatic quantitative feature algorithms to extract
quantitative data instead of qualitative data, reduce observer variation by

manual annotation, and increase speed of workflow.

Radiomics: Quantify the tumor phenoty

Convert Images to mineable data in high throughput (radiomics)
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*Lambin et al.Eur J Cancer 2012
*Kumar et al. Magn Reson Imaging 2012

Radiomics: Workflow & Challenges

mmp Image Acquisition, Reconstruction, Standardization, Storage

Imaging




Radiomics: Workflow & Challenges

- Image Acquisition, reconstruction, standardization, storage

Imaging

mp Automate, Validate, Reproducibility

Segmentation Automatic segmentation:

1) Automated method for high throughput of images.

2) Reducing the high intra- and inter-observer
variability observed for target definition.

utomatic tumor delineation using 3D-Slicer

Developing algorithms for fast, semi-automated, and accurate delineation

omatic tumor delineation using 3D-Slicer

*Velazquez et al, Sci Rep. 2013




3D-Slicer region growing algorithm

3D-Slicer

*Velazquez et al, Sci Rep. 2013

3D-Slicer

Segmentation uncertainty was significantly smaller with 3D-Slicer (Vela. al, Sci Rep. 2013)

Radiomics features based on 3D-Slicer delineations are more stable (Parmar et al. PLOS One 2014)

Radiomics: Workflow & Challenges

- Image Acquisition, reconstruction, standardization, storage

Imaging

Definition, Informative, Reproducibility,
Robustness

Feature extraction




3

re

Texti

[ stats

Radiomic Feature Set (current release ~1600 features)
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Radiomic features can capture tumor phenotypic details
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Robust Radiomics Data Analysis
(Feature Selection & Machine learning)

Motivation

« Predictive/Prognostic models having high accuracy, reliability and efficiency
can be vital factors driving success of “Radiomics”.

* Need for the machine-learning models.
« Radiomics suffers from the curse of dimensionality.
« Need for the feature selection.

- Different feature selection and machine-learning classification methods
have to be investigated.
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@HAR\“RD Radiomics Dimensionality Reduction

Matrix of 440 Radiomics
features
(422 NSCLC patients)

Radiomics Features

Spearman's rank
correlation coefficient

Radiomics Features

Feature selection: RIDER test retest

Rider test retest reproducibility to select the most reproducible tumor image
features extracted from CT images of 31 non-small cell lung cancer (NSCLC) patients.

CT scans acquired within fifteen minutes.
All primary lung cancers were segmented using Definiens
440 radiomics features were extracted from these segmented tumor regions

Intraclass Correlation Coefficient (ICC) was calculated for each feature as a stability
index

Scan 1 Scan 2

[ Lung CT image with segmented tumor region shown with green outline]

Robust Machine Learning in Radiomics

Lung 1 (n=310) Lung 2 (n=154)

Feature extraction

A invensity based features
B e based features

Texture based features

Wavelet based features M
N
Clinical
Trainig Validation

Machine Learning Algarithms
Feature Classification

selection methods *Parmar et al. submitted




Machine Learning in Radiomics
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Feature Selection Methods

P53 5 03 & gz 5 F 3§

ML Classification Methods

*Parmar et al. submitted

Stability for feature selection and Classification

Stability vs Predictive performance
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Imaging-Genomics across cancer types
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*Aerts et al. Nature Comm. 2014
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Radiomics analysis on CT imaging of >1000 patients with Lung or
H&N cancer

Developed and validated a prognostic radiomics signature that
can be applied across cancer types

Imaging-Genomics analysis showed strong correlations between
radiomics and genomics data

Lungl Dataset
422 NSCLC Patients MAASTRO Clinic

Rediomics Features

Radiomics CT Workflow

Radiomics waining | validation
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— Association
lung cancer cohort  HEN cancer cohort  H&N cancer cohort  with gene-expression

Radiomics Signature:
“Statistics Energy”
“ShapeCompactness”
“Gray Level Nonuniformity”
Wavelet “Gray Level Nonuniformity HLH" 7 datasets with a total of 1018 patients

ENEREIN




Radiomics CT Signature Performance

Lung cancer cohorts
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Performance Model:
CI=0.65 on the Lung? Validation Dataset (n=225)
*Aerts et al. Nature Comm. 2014
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Prognostic performance in validation datasets (Concordance Index C1)

- Signature performed significantly better compared to volume in all datasets.

- Signature performance was better than TNM staging in Lung2 and H&N2, and
comparable in the H&N1 dataset.

- Combining the signature with TNM showed significant improvement in all datasets.

Additional Validation of Prognostic Signature

542 Oropharyngeal squamous cell carcinoma (OPSCC) treated at Princess Margaret
Hospital (PMH) in Toronto.

‘Sunival provabiy
Suival probabily

o sw 100 1500 2000 250 ° s0 100 150 2000

Sunhaliime (days) Sunnalime (days)

C-index was: PMH1: 0.628 (P<2.72e-9), PMH2: 0.634 (P<2.7e-6) and PMH3: 0.647 (P<5.35e-6)

Radiomics signature could be validated in an additional large OPSCC cohort

*Leijnaar et al. Acta Onco 2015




GSEA of Prognostic Radiomics Signature

Statistics total energy

Shape compactness.

RLGL gray level nonuniformity

Wavelet HLH
RLGL grey level nonunitormity
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Radiomics-Genomics in NSCLC
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Association Heatmap Radiomics-Genomics

Molecular Pathways

Radiomic Features

Strong correlation between Radiomic data and Molecular Pathways

Dataset of 89 Stage | NSCLC patients treated with surgery
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13 association modules were identified
and independently validated

Radiomics Modules associate with
distinct biological processes

Modules are significantly associated with
clinical parameters:
survival (3), histology (5), stage (10)

Clinical-Radiomics-Genomics Prognostic Signatures

Genomic Signature:
Hou et al., 2010

17 genes for
Post-treatment survival

Radiomics Signature:

Aerts et al., 2014

() Statistics Energy

(I) Shape Compactness

(I11) Grey Level Nonuniformity

(IV) Wavelet Grey Level
Nonuniformity HLH

Prognostic Power (Concordance Index)

Radiomics significantly adds to prognostic gene-signatures

Imaging-Genomics in GBM

Necrosis Contrast Enhancement

High

Low

Edema Tumor Bulk
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Methods: Manual delineations

Manual slice-by-slice
contouring of the abnormal
signal on T1c and FLAIR images

FAST algorithm to segment
contrast-enhancing and
necrotic sub-volumes on Tlc

B Necrosis

[ contrast Enhancement

B =ema Final contours were all

[ Tumor Bulk manually reviewed and edited
Wl Total Tumor Volume by expert neuro-radiologists

*Grossmann et al. Submitted

Prognostic value of volumetric features
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Imaging-Genomics Pathway Analysis of MRI Derived Volumetric
Tumor Phenotype Features in Glioblastoma

n=96 GBM patients |
from TCGA-GBM
cohort Immune response  Inflammation Homeostasis Cell cycling
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Volumetric features predict mutational status in
GBM patients
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TP53 positive/negative

TP53

Status.
Mutated
wid-type

TP53 mutated tumors had
significantly smaller CE
and necrotic volumes
(p=0.012and 0.017,
respectively) compared to
wild-type.
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*Gutman et al. Submitted

Quantitative Imaging: Current Status & Outlook

- Imaging moves towards a computational data science (bioinformatics)
- Due to advances in imaging, quantitative imaging is currently possible
- Large retrospective and prospective potential

- Large number of imaging features defined & successfully implemented

- Robust feature extraction pipeline implemented in 3D-Slicer (Python / Matlab)
- Radiomics signatures are prognostic across cancer types

- Radiomics data is strongly association with driving biological processes

- Ongoing: “Delta radiomics” change of image features
- Ongoing: Preclinical models with tumor models having inducible KO
- Ongoing: Radiomics in clinical trial data




Take home message

The field of Forensic Bioinformatics (Keith Baggerly, MD Anderson)
Investigating the reproducibility and methodology of scientific studies in
retrospect. They request the data from the investigators, they assess the used
statistics, methods, results, and conclusions.

They find a large number of studies that are wrong or even fraud

Duke Scandal (Anil Potti)

Accused of falsifying data regarding the use of microarray genetic analysis for
personalized cancer treatment. Publications in various prestigious scientific
journals were retracted (including PNAS, Lancet Oncology, Nature Medicine,
JAMA, JCO, NEJM).

Forensic Radiology

@PLOS |one

RESEARCH ARTICLE
False Discovery Rates in PET and CT Studies
with Texture Features: A Systematic Review

Anastasia Chalkidou*, Michael J. O'Doherty, Paul K. Marsden

St. Thomas Hospaal, SE1 7EH, London, United Kingdom

Forensic Radiology
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