Machine Learning to Improve Human Learning (or Understanding) from Longitudinal Image Sets

Harini Veeraraghavan
Memorial Sloan Kettering Cancer Center

Collaborators

Joseph O. Deasy, PhD
Duc Fehr, PhD
Evis Sala, MD PhD
Alberto H. Vargas, MD
Hedvig Hricak, MD PhD
Alexandra Snyder-Charen, MD
Robert Young, MD
Ingo Mellinghoff, MD

Elizabeth Sutton, MD
Elizabeth Morris, MD
Nancy Lee, MD
Neelam Tyagi, PhD
Margie Hunt, PhD
Jung-Hun Oh, PhD
Aditya Apte, PhD

Why Longitudinal Radiomics?

- Understanding how patients’ disease progresses over time
- Assessing patients’ response to treatment
- Identifying patients at risk of developing secondary cancers
Issues With Robust Longitudinal Radiomics Analysis

- Missing and inconsistent data
 - Not all data are created equal
 - Variability in the appearance, presence/absence of structures of interest with inter and intra-patients

- Highly unbalanced datasets

- Segmentation of structures of interest

Solutions

- Highly variable datasets
 - Novel representations of the data
 - Learning to deal with missing data

- Highly unbalanced data
 - Sample augmentation-based machine learning

- Segmentation
 - Machine-learning and semi-automatic longitudinal image segmentation methods

Using Segmentation For Radiomics
Issues with Manual Segmentation

- Manual segmentation is
 - Highly accurate (most of the times)
 - Time consuming and labor intensive,
 - Highly variable

Less Labor-Intensive Approach: Interactive Segmentation

User Interface | Mark Target and Background scribbles | Generated Segmentation

Grow Cut Segmentation

What about Repeatability?

- Achieving objective segmentation in real-time with repeatability is difficult
 - Automatic methods are repeatable but less accurate
 - Semi-automatic (interactive) methods are highly accurate but not repeatable

Case 1 | Case 2
Longitudinal Segmentation

- Requires user interaction at each time
 - Can be rather painful when a number of strokes need to be added, corrections need to be supplied increases

15 mins for each time point => 5 time points (75 mins)!!

Solutions

- Combining machine learning to reduce user interactions
 - Algorithm learns model of target from user strokes and segments
 - Algorithm generates queries to improve segmentation online – active learning
- Fully automatic:
 - Combining machine learning with atlas

Combining Machine Learning With User Input

Gaussian mixture model (GMM)-based learning of tumor vs. background
Combining Machine Learning With User Input

Gaussian mixture model (GMM)-based learning of tumor vs. background

Adding Learning also Reduces Variability in Segmentation Accuracy

Active Learning with Interactive Segmentation

- Active learning generates queries to improve the segmentation accuracy automatically
- Learning guides user interactions to achieve repeatable segmentation

H. Veeraraghavan, J.V. Miller, "Active learning guided user interactions for consistent image segmentation with reduced user interactions", ISBI 2011
Algorithm Queries with Segmentations

Number of User Interactions Required with Learning is Significantly Lower than When Not Using Learning

Increasing accuracy with each suggestion

<table>
<thead>
<tr>
<th>Iteration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>duration p-value</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>p-value</td>
<td>-2.5</td>
<td>-3.4</td>
<td>-5.7</td>
<td>-7.2</td>
<td>-8.1</td>
</tr>
</tbody>
</table>

Fully Automatic Longitudinal Segmentation

- Atlas or Patient specific segmentation
 - Involves an image registration to a patient or multi-atlas
 - Refine segmentation from the atlas
 - Machine learning-based classification (optionally) followed by volumetric segmentation
Looking at Longitudinal Trends as Changes in Texture – Patient 1

Looking at Longitudinal Trends as Changes in Texture – Patient 3
Longitudinal Trends Inter-Structure Changes over Time – Patient 1

Pre-Treatment Week 1 Week 3 Week 5

Energy Entropy Contrast Homogeneity

Longitudinal Trends Inter-Structure Changes over Time – Patient 3

Pre-Treatment Week 1 Week 2 Week 4 Week 5 Week 6

Solutions

- Highly variable datasets
 - Novel representations of the data
- Highly unbalanced data
 - Sample augmentation-based machine learning
- Segmentation
 - Machine-learning and semi-automatic longitudinal image segmentation methods
Highly Unbalanced Data

- Typical in medical image analysis and radiomics
 - Too many examples from one class (normal pixels) vs. too few (cancer pixels)
 - Too many examples (highly aggressive cancers) vs. too few (benign cancers)

Problems When Classifying with Unbalanced Data

- Classify prostate Gleason scores from MRI
 - 34 GS (3+3) vs. 159 GS (3+4, 4+3, 4+5, ..., >= 7)

Classification Results From Different Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>PZ and TZ Accuracy 34 (3+3=6) vs. 159 (>=7)</th>
<th>PZ only Accuracy 23 (3+3=6) vs. 120 (>=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Test SVM</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>RFE-SVM</td>
<td>0.83</td>
<td>0.84</td>
</tr>
<tr>
<td>AdaBoost</td>
<td>0.73</td>
<td>0.79</td>
</tr>
<tr>
<td>SVM (mADC)</td>
<td>0.82</td>
<td>0.84</td>
</tr>
<tr>
<td>SVM (mADC & mT3)</td>
<td>0.82</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Results look surprisingly good regardless of the method used!!
Taking a Closer Look at Results

Youden Index (YI): Specificity + Sensitivity - 1

<table>
<thead>
<tr>
<th>Method</th>
<th>PZ and TZ: YI (3+3=6) vs. 159(<=7)</th>
<th>PZ only: YI (3+3=6) vs. 120(<=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Test SVM</td>
<td>0.06</td>
<td>0.24</td>
</tr>
<tr>
<td>RFE-SVM</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>AdaBoost</td>
<td>0.11</td>
<td>0.34</td>
</tr>
<tr>
<td>SVM (mADC)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SVM (mADC & mT2)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Results are not looking so good after all!

Taking a Closer Look at Results

Why?
Minority class gets classified as majority class

Solution
- Terrible solution:
 - Under sample majority class to the same proportion as the minority class
 - We end up having nothing and over fitting the model
Solution

- Better solution:
 - Oversample the minority class so its similarly represented as the majority class
 - We generate “new” samples in the vicinity of the original samples and thereby help the classifier to model both minority and majority class

Results with Minority Oversampling

[Graphs showing performance improvement]

Looking at Numbers

<table>
<thead>
<tr>
<th>Method</th>
<th>PZ and TZ Accuracy (YI)</th>
<th>PZ-only Accuracy (YI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34 (3+3=6) vs. 159 (>=7)</td>
<td>23 (3+3=6) vs. 120 (>=7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>T-Test SVM</th>
<th>RFE SVM</th>
<th>AdaBoost</th>
<th>SVM (mADC)</th>
<th>SVM (mADC & mT2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.84(0.68)</td>
<td>0.94(0.72)</td>
<td>0.64(0.28)</td>
<td>0.63(0.23)</td>
<td>0.68(0.17)</td>
</tr>
<tr>
<td></td>
<td>0.74(0.49)</td>
<td>0.93(0.86)</td>
<td>0.72(0.44)</td>
<td>0.65(0.30)</td>
<td>0.67(0.34)</td>
</tr>
</tbody>
</table>

Results of every classifier improves!!
Solutions

- Highly variable datasets
 - Novel representations of the data

- Highly unbalanced data
 - Sample augmentation-based machine learning

- Segmentation
 - Machine-learning and semi-automatic longitudinal image segmentation methods

How about Representing Metastatic Disease Heterogeneity?

- Example: High grade serous ovarian cancers (HGSOC)
 - Patients almost always present with metastatic disease
 - Extent of metastatic spread is highly variable
 - Problem: How do we correlate patients with different extent of disease to outcomes?

Metastatic Site Heterogeneity through Clustering of Texture Similarities

P1- Mesenchymal subtype
Alive: 10.5mo

P2- Differentiated subtype
Alive: 70.4mo

P3- Proliferative subtype
Alive

Capturing Metastatic Site Heterogeneity - Mesenchymal

Metastatic Site Similarities

Capturing Metastatic Site Heterogeneity - Proliferative

Metastatic Site Similarities

Differences Between Alive vs. Not Alive Patients with Mesenchymal

Differences Between Alive vs. Not Alive Patients with Mesenchymal

Differences Between Alive vs. Not Alive Patients – (not Mesenchymal)

Summary of Metastatic Disease Characteristics

- Patients with good outcomes (survival) tend to have:
 - Most texturally similar sites tend to be like the ovarian mass or cul de sac regardless of disease sub-type
- Patients with poor outcomes (survival) tend to have:
 - Distant metastatic sites tend to be most texturally similar to each other
Conclusions

- Longitudinal radiomics analysis has many challenges
- Some solutions to tackle these challenges are:
 ◦ Extracting appropriate data representation
 ◦ Dealing with unbalanced data
 ◦ Last but not least: Automating volumetric segmentations is important for consistent analysis

How Does it Work?

- Combine multi-parametric MRI (T1pre, T1post1, T1post2, T1post3) and computed image features
- GMM model is a multi-parametric model that extracts a model of the foreground (Tumor) and the background