The “-Omic” World I

- **Definition:**
 - A field of study in **biology** ending in –omics (genomics, transcriptomics, proteomics or metabolomics)

- **Objective:**
 - Collective **characterization** and **quantification** of pools of biological molecules that translate into the structure, function, and dynamics of an organism(s)

The “-Omic” World II

Omics-Based Test Development Process

- According to the Institute of Medicine (IOM):
Radiogenomic Modeling of Rectal Bleeding in Prostate cancer

Coates et al., RO, 2015

Radiogenomics assessment via PCA visualization

Identification of robust biomarkers for RP using Proteomics with limited samples (n= 3x3)

Oh, Craft et al., JPR, 2011

Radioproteomics in Lung Cancer

Lee et al., Med Phys, 2015
Radiation Response as Pan-Omics

Clinical Factors
- Demographics
- Histology
- Dose Prescription
- Treatment Technique
- Planning Data
- Functional imaging
- DoSg-Volume Metrics

Physical Factors
- DNA damage detection and repair genes
- Tumor Stage
- Tumor Volume
- Fibrotic and Inflammatory Cytokines
- Anti-oxidant Enzymes

Panomics
Integration of physics (radiomics) and biology (genomics)

Lung Cancer Jamboree

Imagin

Biomarkers

Fibrosis
Pneumonit

Radiomics

- A ‘new’ form of –omics
- Quantitative information from multi-imaging modalities (PET, CT, MRI, etc) could be related to biological and clinical endpoints (Lambin et al, 2012)
- In oncology, it is decoding the Tumor Phenotype with Non-Invasive Imaging (radiomics.org)
An image worth thousand(s) words

Our early radiomics work

More recently: HNC PET

Common radiomics features
PET/CT from NSCLC local tumor

SUVmax = 13.7

IVH

Texture map

Radiomics PET/CT model

Textures VS CTCv4 fibrosis score

Radiologists' assessments
Textures VS dose/time

Textures VS biomarkers

PET/MR fusion for Sarcoma mets to the lungs

Methodology
Fused versus Separate Scans

QUESTION
Do texture features extracted from **FUSED scans** provide better assessment of tumor aggressiveness than those extracted from **SEPARATE scans**?

FUSION EXAMPLE

MULTIVARIABLE ANALYSIS
(Identifying optimal parsimonious model)

- **FDG-PET**
- **FDG-PET/T2FS**
- **MRI T2FS**

MULTIVARIABLE MODELING
(Logistic regression [LR])

- **Set balanced model**
 - Prediction from balanced training set
- **Varying initialization**
- **Maximization of AUC**
- **ROCAUC analysis**
 - Correction for small sample size effect
 - Visible of best model

FINAL MODEL COMPUTATION
(LR coefficients)

TESTING DATA SIMULATION
(Imbalance-adjusted BOOTSTRAPPING)

FEATURE SET REDUCTION

- **INITIAL FEATURE SET**
 - 41 textures * 240 extraction parameter combinations:
 - ~10,000 texture-parameter features

Goal: Allow the creation of a feature set balance between predictive power and maximal information (Gain)

- **Part 1**
 - Prognostic value

\[Ge_{j} = y \cdot \rho_{j} \cdot [E(x_{j},y)] + \delta_{j} \]

- **Part 2**
 - Interdependence of feature with already chosen features

\[\sum_{j=1}^{k} \frac{(2f-k+1)}{f(f+1)} \cdot \rho(C(x_{j},y)) \]

- **Part 3**
 - Interdependence of feature with features not yet removed

\[\sum_{j=1}^{k} \frac{(2f-k+1)}{f(f+1)} \cdot \rho(C(x_{j},y)) \]

FEATURE SET REDUCTION
Part 1 – Prognostic value

\[r_{i}(x,y) : \text{Spearman’s rank correlation between feature \(x \) and outcome \(y \) (Lung Mets)} \]

For each bootstrap sample, calculate a new \(r_{i}(x,y) \) from the training set. Repeat for 1000 bootstrap samples and record the mean.
FEATURE SET REDUCTION

Part 2 – Interdependence with selected features

\[\text{PIC} = 1 - \text{MIC} \]

Potential Information coefficient

\[\text{MIC} : \frac{\sum_{i=1}^{n} P(x_i, y_i) - \left(\frac{\sum_{i=1}^{n} P(x_i) \cdot P(y_i)}{n} \right)}{ \sqrt{ \left(\frac{\sum_{i=1}^{n} (P(x_i) - \frac{1}{n})^2}{n-1} \right) \cdot \left(\frac{\sum_{i=1}^{n} (P(y_i) - \frac{1}{n})^2}{n-1} \right) } } \]

MIC: Maximal Information coefficient. Has the ability to capture any simple or complex relationship types of association between two variables (independent to the modeled outcome).

FEATURE SET REDUCTION

Part 3 – Interdependence with unselected features

\[\text{PIC} = 1 - \text{MIC} \]

Potential Information coefficient

\[\text{MIC} : \frac{\sum_{i=1}^{n} P(x_i, y_i) - \left(\frac{\sum_{i=1}^{n} P(x_i) \cdot P(y_i)}{n} \right)}{ \sqrt{ \left(\frac{\sum_{i=1}^{n} (P(x_i) - \frac{1}{n})^2}{n-1} \right) \cdot \left(\frac{\sum_{i=1}^{n} (P(y_i) - \frac{1}{n})^2}{n-1} \right) } } \]

MIC: Maximal Information coefficient. Has the ability to capture any simple or complex relationship types of association between two variables (independent to the modeled outcome).

Model Order Selection

Most parsimonious model (set of features)

COMPLETE PREDICTION MODEL

Identified set of features:

1. PET/T2FS -- SZE: Small Zone Emphasis texture extracted on fused PET/T2FS scans
2. PET/T1 -- ZSV: Zone Size Variance texture extracted on fused PET/T1 scans
3. PET/T1 -- HGZE: High Gray-Level Zone Emphasis extracted on PET/T1 scans
4. PET/T2FS -- HGRE: High Gray-Level Run Emphasis extracted on PET/T2FS scans

Final multivariable model response:

\[g(x) = 255 \cdot \text{PET/T2FS} + 5360 \cdot \text{PET/T1} + 1.75 \cdot \text{PET/T1} - 1.60 \cdot \text{PET/T2FS} + 5.50 \]

\[\epsilon(x) \cdot r(y) - (1 - \epsilon(x)) \cdot \frac{\mu(x)}{\epsilon(x)} \]
Conclusions

• Treatment outcomes are multifactorial (Pan-Omics)
 – Combination of physical (radiomics) and biological (radiogenomics) factors
• Radiomics is an essential element of the Pan-Omics world and constitute a powerful tool to interrogate wealthy imaging information
 – Single and multiple modalities
 • Separate and fused
• Radiomics involves two main steps
 – Robust feature extraction
 – Robust modeling

ACKNOWLEDGMENTS

• Joseph Desey, PhD
• Carolyn R. Freeman, MBBS
• Jan Seuntjens, PhD
• Sonia R. Shamene, MD
• Sangkyu Lee, PhD candidate
• Martin Carrier-Vallieres, PhD Candidate