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Identification of robust biomarkers for RP using

s with limited samples (n= 3x3) Radioproteomics in Lung Cancer

Serum biomarkers in Radiation Pneumonitis
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[T planning CT scan +
Pre-Tx blood sample

ntegration of physics (radiomics) and biology (geno!

M Radiomics

* A ‘new’ form of —omics

Lung Cancer Jamboree

Biomarker — Quantitative information from multi-

imaging modalities (PET, CT, MRI, etc)
could be related to biological and
clinical endpoints (Lambin et al, 2012)

—In oncology, it is decoding the Tumor

Phenotype with Non-Invasive Imaging
(radiomics.org)
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More recently: HNC PET M Common radiomics features

‘The highest single value within the region of
interest (RO

Derived from 3 circular ROI of 0.75-1.5 cm in
diameter centered on the maximum-valoe pixcl

Kl ] -
- SUV descriptive  Maximum
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Itensiy volume Nistogram Intensiy volume histogram.

: | ! Total lesion glycolysis
Ocner statistics
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20d order histogram features (energy, enwopy,
contrast and homogeneity)

Higher order histogram features (courseness,
‘contrast, busyness, and complerxity)

Regional features

Regional festures

Geomemic and topological charactenstics

Comparment modzling parameters (cf. Fig. 2)
FDDG compurtment analysis
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M PET/CT from NSCLC local tumor
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M Textures VS CTCv4 fibrosis score
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‘ M Textures VS dose/time

M Textures VS biomarkers
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ﬂET/MR fu510n for Sarcoma mets to the lungs
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Diagnostic Tmaging

With MetsLungs
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l Multivariable 1
analysis

Tumor heterogeneity HYPOTHESIS
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Radiation Oncology




Fused versus Separate Scans

FUSION EXAMPLE

FDG-PET

QUESTION

Do texture features
extracted from
FUSED scans FDG-PET/T2FS
provide better
assessment of
tumor
aggressiveness
than those extracted
from SEPARATE
scans ??

MRI T2FS
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M  FEATURE SET REDUCTION

NITIAL
FEATURE 41 textures * 240 extraction parameter combinations:

SET 10 000 texture-parameter features

Goal: Allow the creation of a feature set balance between
predictive power and maximal information (Gain)

F-k+D

=7 B y] + 8 - )

| F

Part 1
Prognostic value of | | Interdependence of
feature j feature j with of feature j with
already chosen features not yet
features removed

Interdependence
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.y 1 =
) + PIC(xp, X)) [+ 8p * [ lC(xl,xj)}

MULTIVARIABLE ANALYSIS
dentifying-optimal_parsimonious.model)

MULTIVARIABLE MODELING
LOGISTIC REGRESSION (LR)

Set balanced betwd ) ! FINAL MODEL
- Predictive powel COMPUTATION
2 Maximumiinto of best model (LR coefficients)

TESTING DATA SIMULATION
Radiation Oncology (imbalance-adjusted) BOOTSTRAPPING

FEATURE SET REDUCTION
—Part. 1 — Prognostic value

2(f —k+1)
fF+D

— __ 1
Gainj =y ) - PIC(x, X)) | +0p - =

ry(x;y) : Spearman’s rank
correlation between
feature j and outcome y
(Lung Mets)

For each bootstrap sample, calculate a new r,(x;*,y)

from the training set. Repeat for 1000 bootstrap
samples and record the mean.
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FEATURE SET REDUCTION
Interdependence with selected features
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PIC = 1-MIC
Potential information
coefficient

MIC : Maximal Information coefficient esheetai, science 334, 201. Has the ability
to capture any simple of complex relationship types of association
between two variables (independent to the modeled outcome)

Model Order Selection

FUSED scans SEPARATE scans

Prediction performance

=== Specificity
12345678 10

Model Order

FEATURE SET REDUCTION
— Interdependence with unselected features

f

F
R . F-k+D\ e
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PIC = 1-MIC _ .
Potential information i be)
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MIC : Maximal Information coefficient eshetetai, science 334, 201. Has the ability
to capture any simple of complex relationship types of association
between two variables (independent to the modeled outcome)

‘ M COMPLETE PREDICTION MODEL

IDENTIFIED SET OF FEATURES

1. PET/T2FS -- SZE : Small Zone Emphasis texture extracted on fused PET/T2FS scans
2. PET/T1 - ZSV: Zone Size Variance texture extracted on fused PET/T1 scans

3. PET/T1 -- HG. ligh Gray-Level Zone Emphasis extracted on fused PET/T1 scans
4. PET/T2FS -- HGRE: High Gray-Level Run Emphasis extracted on PET/T2FS scans

FINAL MULTIVARIABLE MODEL RESPONSE
g(x)) = -256 x PET/T2FS - SZE
+5360 x PET/T1 - ZSV
+1.75 x PET/T1 - HGZE
+3.16 x PET/T2FS -- HGRE
+26.7

29xi)
m(x) =P(yi=1|x)= T
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M REDICTION MODEL RESPONSE

95% Cl: Lung Mets
Status: Lung Mets
95% CI: No Lung Mets
Status: No Lung Mets

30 20 10 0 10 20
Multivariable model response

Catirierlvaplieres et al., PMB, 2015 https://github.com/mvallieres/radiomics

M Conclusions

+ Treatment outcomes are multifactorial (Pan-Omics)

— Combination of physical (radiomics) and biological
(radiogenomics) factors

* Radiomics is an essential element of the Pan-Omics
world and constitute a powerful tool to interrogate
wealthy imaging imaging information

— Single and multiple modalities
« Separate and fused
» Radiomics involves two main steps
— Robust feature extraction

— Robust modeling
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M STAMP (Simulator for Texture Analysis in MRI/PET)

OPTIMIZED CONDITIONS
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