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The “-Omics” World I
• Definition:

– A field of study in biology ending in –omics
(genomics, transcriptomics, proteomics or
metabolomics)

• Objective:
– Collective characterization and quantification

of pools of biological molecules that translate
into the structure, function, and dynamics of
an organism(s)

Wikipedia.org 
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The “-Omics” World II

www.iupui.edu 07/14/2015 4 

Omics-Based Test Development Process

• According to the Institute of Medicine (IOM):
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Radiogenomic Modeling of ���
Rectal Bleeding in Prostate cancer

Coates et al,  RO,  2015 

CNV 

V10, V20, D50 and XRCC1 CNV 
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Radiogenomics assessment via PCA visualization
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Identification of robust biomarkers for RP using 
Proteomics with limited samples (n= 3x3)

Oh, Craft et al., JPR, 2011 

p>>n 
Use current 

knowledge as 
regularizer 
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Radioproteomics in Lung Cancer

Lee et al, Med Phys,  2015   

Serum biomarkers in Radiation Pneumonitis 
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Radiation Response as Pan-Omics 

Treatment 
Technique 

DNA damage 
detection and 
repair genes 
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Dose 
Prescription 

Anatomical Imaging 
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Metrics 

Tumor 
site 

Tumor 
Stage 

Histology 

Demographics Biomarkers 
Clinical Factors 

Physical Factors 

Planning Data 

Functional imaging 

Panomics  
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Lung Cancer Jamboree 
El Naqa 2014 

07/14/2015 11 

Lung Cancer Jamboree 
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Radiomics
• A ‘new’ form of –omics

– Quantitative information from multi-
imaging modalities (PET, CT, MRI, etc)
could be related to biological and
clinical endpoints (Lambin et al, 2012) 

– In oncology, it is decoding the Tumor
Phenotype with Non-Invasive Imaging
(radiomics.org) 
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An image worth thousand(s) words
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Our early radiomics work

El Naqa, Galatsanos, et al. IEEE TMI, 2002 
El Naqa, Galatsanos, et al. IEEE TMI, 2004 
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More recently: HNC PET

El Naqa, Deasy, et al. PMB, 2009 07/14/2015 16 

Common radiomics features

El Naqa, 2014 
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 PET/CT from NSCLC local tumor

SUVmax=13.7 
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IVH 

Texture map 
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Radiomics PET/CT model

rs=0.5908 (p=0.0013) 

( ) 29.2* _ 80 3.11* _ 70 0.826g PET V CT V= − + −x

Vaidya et al., RO ‘11 07/14/2015 20 

Textures VS CTCv4 fibrosis score

Co-occurrence

Run-length

Global

Texture change in low 
dose region agrees 
better with 
radiologists’ 
assessments
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Textures VS dose/time

Co-occurrence

Run-length

Global
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Textures VS biomarkers

CTCv4 fibrosis group (N=6) No fibrosis group (N=14)
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PET/MR fusion for Sarcoma mets to the lungs  
No MetsLungs 

With MetsLungs 

Carrier-Vallieres et al.,  PMB, 2015 

PREDICTION  
(on BOOTSTRAP 

SAMPLES) 
AUC = 0.984 ± 0.002 

Sensitivity = 0.955 ± 0.007 
Specificity = 0.926 ± 0.004 

A total of 27,405 
feature 
combinations were 
extracted from 51 
patients 

07/14/2015 24 

Methodology
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Fused versus Separate Scans

Do texture features 
extracted from 
FUSED scans 
provide better 
assessment of 

tumor 
aggressiveness 

than those extracted 
from SEPARATE 

scans ?? 

QUESTION FUSION EXAMPLE 
FDG-PET 

MRI T2FS 

FDG-PET/T2FS 
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MULTIVARIABLE ANALYSIS���
(Identifying optimal parsimonious model)

FEATURE 
SET 

REDUCTION 
FEATURE 

SELECTION 
PREDICTION 

PERFORMANCE 
ANALYSIS 

 

~ 10 000 
FEATURES 

FINAL MODEL 
COMPUTATION 
(LR coefficients) 

Set balanced between: 
 - Predictive power 
 - Maximum info  

 - Varying initialization 
 - Maximization of AUC 

- ROC analysis 
 - Correction for small  
   sample size effect 
 - Choice of best model 
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FEATURE SET REDUCTION
41 textures * 240 extraction parameter combinations:   

~10 000 texture-parameter features 

~ INITIAL 
FEATURE 

SET 

Part 2 
Interdependence of 

feature j with 
already chosen 

features 

Part 3 
Interdependence 
of feature j with 
features not yet 

removed 

Goal: Allow the creation of a feature set balance between 
predictive power and maximal information (Gain)  

Part 1  
Prognostic value of 

feature j 
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FEATURE SET REDUCTION���
Part 1 – Prognostic value

rs(xj,y) : Spearman’s rank 
correlation between 

feature j and outcome y 
(Lung Mets) 

For each bootstrap sample, calculate a new rs(xj*b,y) 
from the training set. Repeat for 1000 bootstrap 

samples and record the mean. 
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FEATURE SET REDUCTION���
Part 2 – Interdependence with selected features

PIC = 1-MIC 
Potential information 

coefficient 

MIC : Maximal Information coefficient (Reshef et al., Science 334, 2011). Has the ability 
to capture any simple of complex relationship types of association 
between two variables (independent to the modeled outcome)  
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FEATURE SET REDUCTION���
Part 3 – Interdependence with unselected features

PIC = 1-MIC 
Potential information 

coefficient 

MIC : Maximal Information coefficient (Reshef et al., Science 334, 2011). Has the ability 
to capture any simple of complex relationship types of association 
between two variables (independent to the modeled outcome)  
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Model Order Selection

Most 
parsimonious 
model (set of 

features) 
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COMPLETE PREDICTION MODEL

1. PET/T2FS -- SZE : Small Zone Emphasis texture extracted on fused PET/T2FS scans
2. PET/T1 -- ZSV: Zone Size Variance texture extracted on fused PET/T1 scans 
3. PET/T1 -- HGZE: High Gray-Level Zone Emphasis extracted on fused PET/T1 scans 
4. PET/T2FS -- HGRE: High Gray-Level Run Emphasis extracted on PET/T2FS scans 

IDENTIFIED SET OF FEATURES 
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PREDICTION MODEL RESPONSE

PREDICTION  
(on BOOTSTRAP SAMPLES) 

AUC = 0.984 ± 0.002 
Sensitivity = 0.955 ± 0.007 
Specificity = 0.926 ± 0.004 

Carrier-Vallieres et al.,  PMB, 2015 https://github.com/mvallieres/radiomics 07/14/2015 34 

STAMP (Simulator for Texture Analysis in MRI/PET)

Vallieres, Laberge et al., AAPM, 2014 
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Conclusions

• Treatment outcomes are multifactorial (Pan-Omics)
– Combination of physical (radiomics) and biological 

(radiogenomics) factors 

• Radiomics is an essential element of the Pan-Omics
world and constitute a powerful tool to interrogate
wealthy imaging imaging information
– Single and multiple modalities

• Separate and fused

• Radiomics involves two main steps
– Robust feature extraction
– Robust modeling
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