MD Anderson

Gold nanoparticles as radiosensitizers – what does it take to go from the bench to the bedside

Sunil Krishnan, MD Director, Center for Radiation Oncology Research John E. and Dorothy J. Harris Professor, Radiation Oncology MD Anderson Cancer Center, Houston, TX

Disclosure Information Sunil Krishnan

I have the following financial relationships to disclose:

Grant or research support from: Genentech, Merck, Malaysian Palm Oil Board, Hitachi, Shell, FUS Foundation. Honoraria from: Carestream Molecular Imaging

I WILL include discussion of investigational or off-label use of a product in my presentation.

THE UNIVERSITY OF TEXAS MD Anderson Cancer Center

- Core-shell ratio determines the optical characteristics

Mechanisms Early effects	MD Anderson Cancer Center Late effects
Anti-hypoxic effect	Vascular disrupting effect?

Stem c	ell sen	sitizati	on		MD Anders Cancer Cer
2.0 1.5				3.0 902.5 2.0 1.5	
0.5			<u> </u>	00/1.0 1.0 1.0 0.0 0.0	
05- 00 Treatment (Tumor T7)	10000	1000	100	001.0 50.05 0.0	Tumor Initiation Cell Frequency (TIC) 95% CI
0.5 0.0 Treatment (Tumor T7) Mock	10000	1000	100	01.0 50.05 0.0 10 0/6	Tumor Initiation Cell Frequency (TIC) 95% CI 1/323 (128-814)
05 00 Treatment (Tumor T7) Mock 5 GY	10000 6/6 6/6	1000 6/6 6/6	100 1/6 2/6	001.0 50.05 0.0 10 1/6	Tumor Initiation Cell Frequency (TIC) 95% CI 1/323 (128-814) 1/175 (61-498)

Atkinson RA, et al. Sci Translat Med, 2010; 2(55):55ra79

-		

Gold nanoshells

MDAnderson er Cente

Toxicity evaluation

- Consistency of formulation under GLP conditions
- No endotoxin contamination
- No pyrogenicity US Pharmacopeia [USP] method, rabbit
- No genotoxicity Ames bacterial mutagenicity, CHO cell chromosomal aberration assay, in vivo mouse micronucleus
 No in vitro hemolysis

- No intracutaneous reactivity in the rabbit
 No sensitization maximization assay in the guinea pig
- No acute systemic toxicity in the mouse single, multiple injections
- No late toxicity in Beagle dogs up to 404 days

Gad SC, et al. Int J Toxicol. 2012

convulsions

Nanoparticle hyperthermia caveats

MDAnderson ncer Cente

Location

ò

6

12 18 24 30 36

Time (month)

- Accumulate passively in tumors via leaky vasculature
- Perivascular sequestration (larger particles) or a gradient away from the vessel (smaller particles)
- Significant accumulation in liver and spleen (unless they are <5nm)
- Can accumulate preferentially in tumor if decorated with peptides/antibodies (active targeting)
- Heterogeneity of temperature within tumor Inside-out hyperthermia

Vascular-focused hyperthermia Preferential sensitization of stem cell niche?

- Theranostics

- Dual imaging and therapy potential
 May facilitate thermal dosimetric modeling
 Combination strategies
 Drug delivery? Radiation dose enhancement?

Nanoparticle hyperthermia challenges

MDAnderson uncer Center

- Biocompatibility

 Possibly less of a concern with gold and iron-oxide
 Some concerns with carbon nanotubes, gold nanorods
- Variability
- Physicochemical consistency
 Batch-to-batch uniformity
 Scale-up challenges

- Extrinsic energy transduction efficiency Low for magnetic nanoparticles – need high concentrations of NPs in tumor, not achievable with i.v. administration
- Focusing energy on just the tumor Technically challenging for AMF

- Heating deep-seated tumors
 Challenging with light as the activator limited to superficial tumors (IBC, melanoma, head and neck, GI luminal?) or the operative bed But high transduction efficiency – i.v. administration sufficient

HE UNIVERSITY OF TEXAS MDAnderson Cancer Center

nanoparticles

Passive targeting

nanoparticles + peptides Active targeting

Summary

MD Anderson Cancer Center

- Radiosensitization possible with

 - Unconjugated gold NPs but need large quantities
 Conjugated gold NPs but need to optimize

 - Conjugated gold NFS but need to optimize construct · Vascular endothelial · Cancer cell Trojan-horse delivery of gold NPs need to schering operativety optimize construct

 - Thernostic nanoparticle (AGuIX)
 Direct injection of NPs (hafnium)

NP dose enhancement challenges

MDAnderson uncer Center

- Biocompatibility

 Less of a concern with gold and iron-oxide, some concerns with rods
 All probably need entire battery of tests for safety/tolerability (NCL)
- Variability
- Physicochemical consistency, batch-to-batch uniformity
 Scale-up challenges
- **Biodistribution = size, charge, functionality dependent** Liver and spleen uptake with i.v. administration
 Renal clearance only if <5.5 nm
 Combination with chemotherapy

- Limited data

- Device or drug Need IND if decorated with peptides or antibodies
- Ideal clinical scenario for testing Benefit from dose escalation, good differential uptake (tumor vs. critical adjacent organ), retained in tumor for long, does not interfere with concurrent chemo, imageable

Acknowledgements

Krishnan lab Parmesh Diagaradjane Amit Deorukhkar Edward Agyare Dev Chatterjee Shanta Bhattarai Tatiana Marques Pinto Jihyoun Lee Aaron Brown Kevin Kotamarti Nga Diep Krystina Sang Jacobo Orenstein Cardona Norman Colon Hee Chul Park Brook Walter Texas Southern Univ Huan Xie

NIH - KL2, R21, R01 x 2, U01 DOD PCRP, ANH pre-center grant, Shell UT Cntr Biomed Engg, Hitachi, FUSF, MDACC

