

John B. Weaver Department of Radiology Geisel School of Medicine Dartmouth College and Dartmouth-Hitchcock Medical Center

Richard P. Feynman "There's Plenty of Room at the Bottom" (1959): "The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom." ... "Consider the possibility that we too can make a thing very small which does what we want – that we coar manufacture an object that maneuvers at that level!"

Outline

Sensitive Detection

Magnetic Nanoparticle Imaging MPI

MSB Spectroscopy

MSB Measurements

for Inflammation/Immune Monitoring:

- Molecular Concentration Measurements
 (*in vivo* ELISA)
- · Phagocytic Activity cell uptake
- Temperature

Disclosures:

- IP
- NIH/NCI 1U54CA151662 CCNE

Here II

MPI - Magnetic Particle Imaging:

- High Sensitivity by Detecting Harmonics
- Localization by Saturating Nanoparticles Outside Field-Free Point

Development Focused on:

- · Low Noise Electronics Good Filters
- Large Field Gradients*
- Nanoparticles with High Saturation & Neel Relaxation

Magnetic Particle Spectroscopy MSB Magnetic Spectroscopy of Brownian Motion 1) Measures Harmonics – MPI Detection Sensitivity with 2) Larger Nanoparticles that Rotate Via Brownian Motion so the Signal Reflects the Microenvironment Drive Coll (Vertical AC Field) Sample

Pick-up Coil

Balancing Coil In series with the pickup coil

Scaling-Uncertainty Measurements

Measured quantity that is monotonic function of the product of 1) an unknown and 2) an user controlled quantity.

Need not characterize either *Functional form* or *Environment*.

.....

Phase-Lock Amplifier

See.

Outline

- Sensitive Detection Magnetic Nanoparticle Imaging MPI

- MSB Spectroscopy
 <u>MSB Measurements:</u>
 Molecular Concentration Measurements (in vivo ELISA)
 - Cell nanoparticle uptake
 - Temperature

Here E

Biological Markers

Immunotherapy effectiveness:

- Cytokine signaling changes – canine model TNF $\!\gamma^{1}$

Infection Markers:

- Increased cytokine signaling
- Increased phagocytic activity
- Increased metabolic activity (Increased temperature)

Maekawa N, Konnai S, Ikebuchi R, Okagawa T, Adachi M, Takagi S, Kagawa Y, Nakajima C, Suzuki Y, Murata S. Expression of PD-L1 on Canine Tumor Cells and Enhancement of IFN-y Production from Tumor-Infiltrating Cells by PD-L1 Blockade. PloS one 2014, 9(6): e98415

-se	in vivo ELISA	- Concentra	tion
1797	Measu	urements	Dartmouth
	Streptavidin	Sensitivit	ies with
0.3 0.3 0.3	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	current ap	oparatus 0.1 nM
0.3 9 9 9 0.3		Streptavidin	0.15 nM
Harmoni o	3	MMP-9 Thrombin	<2 NM 4 nM
- 0.2 0.2 0.2	3 	VEGF	<20 nM
0.2	0 500 1000 1500 2000 Concentration (pM) 0 2000 1000 1500 2000	ssDNA in Exci	sed Kidney
1	100	& in blood:	<0.4 nM
S	9	using 1	50 µg NPs
Xiaojua	n Zhang <u>Bioelectronics</u> 50:441–446 (2013).	agnetic Spectroscopy of Nanoparticle Br	ownian Motion" <u>Biosensors and</u>

in vivo Tumor Uptake Studies

Harmonic Ratio vs Incubation Time in Tissue

Direct	Injection
Incubs	ation

- Tumor Excision
- 4. Tumor Division
- 5. MSB Measurement
- 6. Pathology

Adam M. Rauwerdink (& J.B. Weaver, Andrew J. Giustini (& P.J. Hoopes)

Identify Surgical Site Infections UHMWP Temperature Probe Material from Anna Samia's lab, Case Western Reserve

Small (Neel Relaxing) Nanoparticles Embedded in UHMWP

Conclusions:

nt NP Stude

- MSB can monitor local immune/inflammatory responses
 - Cytokine concentrations
 - · Phagocytic activity cell uptake
 - Temperature.
- MSB Sensitivity can be further optimized.

We believe that the potential applications are many and diverse:

- Cancer therapy monitoring
- Early infection identification
- · Early cancer detection

that we can manufacture an object that maneuvers at that level!"

1) NIH - Centers for Cancer Nanotechnology Excellence 1U54CA151662-01

2) Norris Cotton Cancer Center
 3) Department of Radiology

characterize the microenvironment:

- Temperature¹⁻⁴ •
- Viscosity^{5, 6} •
- Cell Phagocytic Activity⁷ •
- Signaling Molecules^{8, 9} •
- Local Matrix Rigidity^{10, 11}

Adam M. Rauwerdink, Hansen EW. M es D, Zhang X, Kuehlert E, Forauer E, 49 2014, 59(5): 1109.

Microenvironment Sensing

- Temperature^{1,2,19}
- Molecular
- Viscosity^{3,6} •

•

- Concentrations^{12,13,21,22} Heating Mechanisms & ٠
- Molecular Binding^{4,5} Cell Uptake &
- Compartmentalization^{8,9,15} Imaging^{10,11,14,20}
- Matrix Rigidity¹⁷ NP Quantitation¹⁸

Modeling¹⁶

Applications we are pursuing in temporal order:

- Monitor Temperature During Hyperthermia Treatment
- Ovarian Cancer Screening
- in vivo ELISA for Immunotherapy Monitoring
- Early Identification of Surgical Site Infections

Conclusions:

NP signals can be localized using a perpendicular magnetization induced by a static perpendicular field.

<u>6</u>,0,1

- Gradients in:

 a) in-line and b) perpendicular fields can be used to achieve excellent conditioning (condition numbers <10).
 - In-line geometry is fast but requires larger dynamic fields
 - Perpendicular geometry requires small dynamic fields but is slower
- pMPI is worth further study

Current Weaver NP Postdocs/Students

Former Weaver NP Students

1) NIH - Centers for Cancer Nanotechnology Excellence 1U54CA151662-01 2) Norris Cotton Cancer Center, Prouty Grant 3) Department of Radiology

Apparatus Comparison					
Generation	1	2	3		
Feedthrough	2.5 nV	0.3 nV	0.04 nV		
Standard Deviation in Feedthrough	0.2 nV	0.02 nV	0.006 nV		
Sensitivity (grams iron)	90 µg¹	100 ng ²	< 10 ng		
Concentration Sensitivity (Molar)	1 nM ¹	1 fM ?			

ng Magnetic Spectroscopy of Nanopa ves DB, Shi Y, Gimi B, Nemani KV, Pe aver "Molecular Sensing with Magnetic rs and Bioelectronics 50:441–446 (2013). a.S. Maguer IB. Toward Localized in the

Cool Cells to Eliminate Invagination

Conclusions:

Simulations show that NP signals can be localized using the perpendicular magnetization.

640) 1. (111)

_

MSB - <u>M</u> agnetic <u>S</u> pectroscopy of Nanoparticle <u>B</u> rownian Motion	Dartmouth
Flat top Saturation Phase lag	an
the lower harmonics with increased relaxation time ¹⁴ (increased viscosity or binding).	d
 A.M.Ruwerdirk, J.B. Waser, Annual of Magnetic March Magnetic Marchine, 322 (2010) 602–613. A.M.Ruwerdirk, J.B. Waser, Angle Physical Thera 56 (2010) 03702; A.M.Ruwerdirk, J.B. Waser, Angle Physical Physics, 37 (2010) 2507–2592. A.M.Ruwerdirk, J.B. Waser, Marchael K.P.J. Hoogen, J.B. Waser, Integrative Biology, 4 (2012) 1283–1288. A.J. Guattin, T. Hermand, A.R.Ruwerdirk, P.J. Hoogen, J.B. Waser, Integrative Biology, 4 (2012) 1283–1288. A.M. Ruwerdirk, J.B. Waser, Marchael Physics, 39 (2012) 12705–2770. 	

