C-arm cone-beam CT imaging in future ischemic acute stroke treatment: One-stop-shop imaging

Guang-Hong Chen, PhD

DEPARTMENT OF MEDICAL PHYSICS University of Wisconsin-Madison

Acknowledgement

W

W

Interventional Stroke Imaging Research Team at UW-Madison:

PIs: Guang-Hong Chen, Charlie Strother, and Beverly Aagaard-Kienitz Members (Basic Science):

Yinsheng Li, Kai Niu, Yijing Wu, John Garrett, Ke Li

Members (Clinical):

Pengfei Yang, David Niemann, Azam Ahmed, Howard Rowley, and Pat Turski Siemens Support: Sebastian Schafer, Kevin Royalty, Klaus Klingenbeck

International consortium on interventional stroke imaging:

Clinical team led by Drs. Doerfler and Struffert at the University of Erlangen-Nuremberg

Clinical team led by Dr. Guo in Taiwan

Outline

Clinical motivation of one-stop-shop imaging

- Technical challenges
- Enabling technology for one-stop-shop imaging: SMART-RECON and SMART IV 3D-DSA
- One-stop-shop imaging using SMART-RECON: non-contrast CBCT images, time-resolved CBCT angiography, and CBCT perfusion maps
- Summary and discussion

- Clinical motivation of one-stop-shop imaging
- Technical challenges
- Enabling technology for one-stop-shop imaging: SMART-RECON and SMART IV 3D-DSA
- One-stop-shop imaging using SMART-RECON: non-contrast CBCT images, time-resolved CBCT angiography, and CBCT perfusion maps
- Summary and discussion

Time is brain!

Ŵ

W

In a typical acute ischemic stroke, In a typical acute ischering stroke, in every <u>minute</u>, the brains loses: 2 million neurons 14 billion synapses 7.5 miles of myelinated nerve fibers

Needed imaging information in

- Non-contrast whole brain DynaCT images to exclude hemorrhage
- Time-resolved angiography to perform collateral analysis
- Whole brain cone-beam CT Perfusion to detect penumbra and infarction core

Plus:

- Reduced motion artifacts
 Reduced radiation dose
 Reduced contrast dose

....

- Clinical motivations
- Technical challenges
- Enabling technology for one-stop-shop imaging: SMART-RECON and SMART IV 3D-DSA
- One-stop-shop imaging using SMART-RECON: non-contrast CBCT images, timeresolved CBCT angiography, and CBCT perfusion maps
- Summary and discussion

Comparison of key technical parameters 🛞		
	Diagnostic MDCT	C-arm (Siemens Biplane)
Data acquisition	Continuous rotation	Back-and-forth multiple sweeps
Temporal resolution	0.5 s	4.3 s
Sampling interval	0.5 s	5.87 s

Summary: A factor of 3-4 times improvement in temporal resolution is needed to enable C-arm cone-beam CT perfusion imaging!

Software consideration

Why can't we reconstruct images using data acquired within a temporal window shorter than 2 seconds to improve temporal resolution and increase temporal sampling density?

Hardware considerations

Safety concerns limit the fastest C-arm gantry to about 3 seconds for a short-scan acquisition;

W

- Slow detector readout speed limits the number of projections acquired in fast acquisitions (more severe view aliasing artifacts);
 The negative impacts of the gantry pause (~1.5)
- seconds) increases for fast acquisitions (inaccuracy in perfusion measurements); Mechanical vibrations are more severe in fast
- acquisitions (severe artifacts); Limited availability of fast acquisition devices in
- clinical practice.

C-arm cone-beam CT perfusion: W a revolution

- At least a short-scan angular span is required to reconstruct C-arm cone-beam CT images without limited-view artifacts with the current Filtered Backprojection (FBP) method;
 This alone limits the temporal resolution in current C-arm bi-plane systems to about 6 seconds
- The need for a factor of 3-4 temporal resolution improvement in C-arm CT perfusion imaging requires a breakthrough in image reconstruction t enable limited-view artifact free cone-beam CT reconstructions from data acquired in an angular span of only 50-60 degrees! on to

W

- Clinical motivations
- Technical challenges
- Enabling technology for one-stop-shop imaging: SMART-RECON and SMART IV 3D-DSA
- One-stop-shop imaging using SMART-RECON: non-contrast CBCT images, timeresolved CBCT angiography, and CBCT perfusion maps
- Summary and discussion

<u>Main Result:</u> SMART-RECON enables the reconstruction of the entire dynamic image object from an angular span of 50~60 degrees with no limited-view artifacts!

This feature allows us to improve the temporal resolution by a factor of 3-4 for any current C-arm imaging platform and enable highly accurate perfusion measurements and time-resolved angiography.

Guang-Hong Chen and Yinsheng Li, Synchronized Multi-Artifact Reduction with Tomographyic RECONstruction (SMART-RECON), Med. Phys., Vol. 42 (8):(2015).

- Clinical motivations
- Technical challenges
- Enabling technology for one-stop-shop imaging: SMART-RECON and SMART IV 3D-DSA
- One-stop-shop imaging using SMART-RECON: non-contrast CBCT images, timeresolved CBCT angiography, and CBCT perfusion maps
- Summary and discussion

How about C-arm cone beam CT perfusion imaging?

Slice # = 132, 5 mm slice thickness. Comparison with CT reference

- Clinical motivations
- Technical challenges
- Enabling technology for one-stop-shop imaging: SMART-RECON and SMART IV 3D-DSA
- One-stop-shop imaging using SMART-RECON: non-contrast CBCT images, timeresolved CBCT angiography, and CBCT perfusion maps
- Summary and discussion

Time is brain; time is life!

Clinical need

120 Million neurons,
 840 Billion Synapses

 450 Miles of myelinated nerve fibers
 A quantum paradigm shift in clinical workflow is needed save two hours from stroke onset to start time in endovascular therapy

The major limiting factor is the need to use <u>multiple</u> imagi modalities in <u>different locations</u> to determine how to best treat each patient

echnical need:

For stroke imaging we require sub-2 second temporal resolution, however current C-arm systems can only achieve 6 second temporal resolution Therefore, quantum image reconstruction technology is needed to achieve a quantum transition in temporal resolution and enable time-resolved cone-beam CT angiography and whole brain perfusion to enable new clipical workflow

m clinical par

Ŵ

Reconstruction time

A PC equipped with two GPUs (GTX Titan Z and GTX 980).

Image matrix of 256x256x256

Data set: 348x616x480 projections

W/O optimization in implementation, total reconstruction time of 7.5 minutes for the results presented in this presentation.

Summary and discussion

W

Ŵ

W

- SMART-RECON enables one-stop-shop stroke imaging with the current C-arm CBCT systems without significant hardware modifications, generating:
 - non-contrast CBCT images
 - time-resolved CBCT angiography
 - and CBCT perfusion maps
- SMART-RECON enables improved image quality with a reduction of:
 - motion artifacts,
 - image noise,
 - And of other artifacts.

Summary and discussion

- SMART-RECON enables one-stop-shop Stroke imaging to generate non-contrast DynaCT, time-resolved CBCT angiography, and CBCT perfusion maps with the current Siemens bi-plane systems without significant hardware modifications
- SMART-RECON enables improved image quality with reduced motion artifacts, reduced noise, and a reduction of other artifacts
 SMART-RECON enables one-stop-shop imaging with reduced radiation dose and contrast dose for repeated pagaiestic pagaiestic
- contrast dose for repeated acquisitions if needed

Two major challenges in C-arm CBCT perfusion

- Low temporal sampling density:
 - To recover a curve, we need adequate sampling points.
- Low temporal resolution:
 - If there is rapid change of contrast in the sampling window, the reconstructed intensity may be inaccurate.

Super-short may not be super useful?

Dynamic image reconstruction

Wider data acquisition temporal window, stronger is the temporal-average artifacts:

distortion artifacts streaking artifacts shading artifacts lower signal values for contrast enhanced area

 Narrower temporal window for data acquisition is desired!

Dynamic Image Reconstruction

 Narrower data acquisition temporal window, easier to violate the Tuy data sufficiency condition and thus limited-view artifacts:

Shading artifacts Distortion artifacts

60

W

The most wanted in practice

Ŵ

In dynamic CT image reconstruction, it is highly desirable to look for an image reconstruction algorithm that enables us to reconstruct the <u>entire</u> <u>image object</u> with data acquired in a temporal window corresponding to an angular span of <u>120 degrees</u> or even less.

Go below 120 degrees??

- Synchronized Multi-Artifacts Reduction with Tomographic Reconstruction (SMART-RECON)
- Enable to reconstruct the entire dynamic image object from 50-60 degree angular spans <u>without limited-view artifacts!</u>

One-Stop-Shop Stroke Imaging

Time is brain!

- Quantum paradigm shift in clinical workflow to save two hours from stroke onset to start time in endovascular therapy;
 Quantum image reconstruction technology
- Quantum image reconstruction technology for a quantum transition in temporal resolution to enable time-resolved conebeam CT angiography and whole brain perfusion to enable new clinical workflow;
- Quantum clinical impact in five years.

66