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What’s happening in the Interventional Suite? 

 Number and complexity of minimally invasive interventions  

 Non-cardiac:  

◦ mechanical thrombectomy for stroke treatment  

◦ chemoembolization for hepatic tumor treatment 

 Cardiac :  

◦ EP, IC, trans-catheter valve replacement 

◦ new molecular therapies for targeted treatment of  
ischemia are under development 

 Quantitative imaging during the procedure is  
the goal… 
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Need for quantitative information 

 Need information on the current status of the 
patient: 
◦ Size and location of ischemic tissue 
◦ Accurate 3D geometry for device sizing 
◦ Motion of the heart chambers, coronary arteries etc. 

 Need for feedback during the intervention: 
◦ Are the lesions we create contiguous? Are they 

transmural? Are they big enough?  
◦ Have we changed the ventricle dynamics? 

Cardiac arrhythmia 

 Caused by unwanted electrical 
foci 

 Risks associated with 
arrhythmia: 
◦ Atrial Fibrillation (AF) : 15% of 

all strokes (~70,000) 
◦ Ventricular Tachycardia (VT) : 

high risk of sudden cardiac 
death 

Motivation - RF ablation for arrhythmia 

 Current treatments 

◦ medication (~50% successful)  

◦ implantable cardioverter-defibrillator  

◦ catheter ablation 

 Radiofrequency ablation (RFA) 

◦ Often a first-line therapy  

◦ Radiofrequency (RF) energy 

◦ Burn undesirable electrical foci 
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Motivation - RF ablation 

 Procedures take 2-5 hours 

 Procedure success is highly variable 

◦ 50-80% effective for ventricular arrhythmias and 

atrial fibrillation 

 Many follow-up  

procedures 

 

Average Effectiveness of RF Ablation Procedure 
http://www.mayoclinic.com/health/heart-arrhythmias/ 2007  

Motivation - RF ablation 

 Currently indirect 
measurements of lesion 
formation: 

◦ RF energy delivered 

◦ temperature at catheter tip 

◦ mapping/catheter tracking 

 

 
Crandall M A et al. Mayo Clin Proc. 2009;84:643-662 

Creating 3D Images in the Interventional Lab 

1. Rotational Angiography Run 

 

3. Reconstruction 

4. In-room Display 

    and Analysis 

2. Image transfer 

Courtesy Stefan Schaller, Siemens 
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C-arm System :: Clinical CT 

C-arm CT with ECG gating 

 Timing the return of each rotation 
properly provides sufficient data for a 
reconstruction of ¼ of the cardiac cycle 
e.g. in diastole 

Image Quality under Ideal Conditions 

 Pig model 

 45-55 kg 

 Ideal breath hold 

 ‘low’-ish scatter  
(ie. small thorax) 

 Low heart rate 
(60 bpm) 
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First Humans 

 4 sweeps,  

 4s per sweep, ~200 
projections per sweep 

 Total scan time ~20 s 
(including time for C-
arm turn around) 

  total breath hold ~ 24 s 

Al-ahmad, A., Wigstrom, L., Sandner-Porkristl, D., Wang, P.J., Zei, P.C., 
Boese, J., Lauritsch, G., Moore, Chan, F., Fahrig, R. “Time-resolved three-
dimensional imaging of the left atrium and pulmonary veins in the 
interventional suite – A comparison between C-arm CT and Multislice 
CT.” Heart Rhythm 5 (4), 513-519, (2008).  

In vivo 

imaging protocol 

150mL Omnipaque (350 mg/mL) 
peripheral venous (IVC) injection 

no high-contrast streak  
uniform perfusion 

42 s delay for first-pass image no high-contrast streak  

4 sweeps x 5s ECG-gated freeze motion 

90 and 70 kV, 1.2μGy/p (24mSv) low contrast 
detectability 

Collimate around heart reduce scatter 

Timing 

contrast C-arm CT: First pass 

1 5  10 15 
min 

0 

~24s ~42s 

monitor radiofrequency  
ablation treatment  
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Imaging Myocardial Infarct 

 The total volume of Acute Myocardial infarction 
and Microvascular Obstruction can be accurately 
assessed using ECG-gated C-arm CT  

 An imaging time of ~1-5 min post contrast 
injection could be used to assess both total infarct 
size and Microvascular Obstruction volume 

A 

C 

First pass                      1 min                        5 min                         10 min                     

Girard EE, Al-Ahmad A, Rosenberg J, Luong R, Moore T, Lauritsch G, Chan F, Lee DP, Fahrig R, “Contrast-Enhanced C-arm Computed Tomography Imaging of Myocardial 
Infarction in the Interventional Suite.” Invest. Radiol. 2015 Jan 29 

Total Infarct Volume can be Measured  

Girard EE, Al-Ahmad A, Rosenberg J, Luong R, Moore T, Lauritsch G, Chan F, Lee DP, Fahrig R, ”Contrast-Enhanced C-arm Computed Tomography Imaging of Myocardial 
Infarction in the Interventional Suite.” Invest. Radiol. 2015 Jan 29 

But… 

 ECG gating : soft tissue contrast but long breath hold… 

 Goals: 

• 4-D reconstruction of cardiac chambers using single C-arm sweep 

• Extraction of quantitative functional parameters 

 Clinical applications: 

• Ventricular procedures, e.g. ventricle ablation guidance 

• Mitral valve repair, e.g. guidance of annuloplasty 

• Functional analysis, e.g. identification of pathological regions 

http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
http://www.ncbi.nlm.nih.gov/pubmed/25635589
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Two options for motion estimation / compensation 
 

1. Surface-based 

• One chamber imaging, e.g. left ventricle (LV)  
→ allows delineation of object in 2-D projections 

• Short acquisition (5 s) 

• Direct contrast administration 
• Min. 5 heart cycles → sinus rhythm 

2. Volume-based 

• Two to four chamber imaging 
→ overlapping objects in 2-D projections 

• Longer acquisition (14 s) 

• Systemic contrast administration 
• Min. 25 heart cycles → moderate heart pacing 

Option 1 

 Surface-based motion 
correction 
◦ One chamber imaging, e.g. left 

ventricle (LV) 
allows delineation of object in 
2-D projections 

◦ Short acquisition (5 s) 
◦ Direct contrast administration 
◦ Minimum 5 heart cycles … 

sinus rhythm 

deform   contour 

Surface-based Motion Estimation 

 Tomographic 
reconstruction 
with only 5 views 
per cardiac phase 
is not possible 

 Surface-based 
motion estimation 

update 3-D mesh model 
17 

3D ventricular mesh model 

forward project 

2D contour of mesh model 

compare with 2-D 
segmented bloodpool 

convert 2-D 
correction to 3-D 
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K. Müller et al., “Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for 

cardiac angiographic C-arm data”,  Medical Physics 40, 3 (Feb. 2013) 

Dense Motion Vector Field 

 Evaluation of 
interpolation methods 
from surface to voxel-
based motion 
◦ Thin-plate splines 

◦ Linear methods 

20 

Wall Motion Analysis 

 Quantitative wall motion 
analysis 
◦ Ejection fraction 
◦ Time to max.  

contraction 
◦ Systolic  

dyssynchrony 
index 

Contraction curves of the individual 16 left 

ventricular segments over one heart cycle. 

K. Müller et al., “Interventional Heart Wall Motion Analysis with Cardiac C-arm CT Systems”,   

    Physics in Medicine and Biology 59, 9 (Apr. 2014), pp. 2265–2284 

color coded according to time to 

maximal contraction of the ventricle 

16 Segment model for 

the left ventricle 

Volume-based Approach 

4 K. Müller et al., “4-D Motion Field Estimation by Combined Multiple Heart Phase Registration (CMHPR) for Cardiac C-arm Data”,  IEEE Nuclear Science 

Symposium and Medical Imaging Conference Record (NSS/MIC), 2012, Anaheim, CA, USA, 2012, pp. 3707–3712 

Tomographic reconstruction 
of different heart phases 

from 
ECG-gated data 3 Methods 

 

3-D/3-D Cardiac Registration with Cyclic Motion 
Constraints 
3-D/4-D Combined Multiple Heart Phase 
Registration4 

3-D/3-D Deformable Registration5,6,7 

Estimation of cardiac 
motion 

Motion-compensated 
tomographic reconstruction 

5 K. Müller et al., “Image Artifact Influence on Motion Compensated Tomographic Reconstruction in Cardiac C-arm ct”,  Fully Three-Dimensional Image 

Reconstruction in Radiology and Nuclear Medicine, 2013, Lake Tahoe, CA, USA, 2013, pp. 98–101 
6 K. Müller et al., “Image Artefact Propagation in Motion Estimation and Reconstruction in Interventional Cardiac C-arm ct”,  Physics in Medicine and Biology 

(2014), accepted for publication 
7 K. Müller et al., “Catheter Artifact Reduction (CAR) in Dynamic Cardiac Chamber Imaging with Interventional C-arm ct”,  The Third International Conference on 

Image Formation in X-Ray Computed Tomography, Salt Lake City, UT, USA, 2014, accepted for publication 
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3-D/3-D Deformable Registration 

26 

Choose a reference heart phase from K  heart phases 

For each reference phase, register (K − 1) remaining heart phases 

3-D/3-D Deformable Registration 
Choose a reference heart phase from K  heart phases 

For each reference phase, register (K − 1) remaining heart phases 

... 

26 

3-D/3-D Deformable Registration 
Choose a reference heart phase from K  heart phases 

For each reference phase, register (K − 1) remaining heart phases 

... 

26 
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3-D/3-D Deformable Registration 
Choose a reference heart phase from K  heart phases 

For each reference phase, register (K − 1) remaining heart phases 

... 

Components: 

1. Motion model 

2. Objective function 

3. Optimizer 
26 
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Volume-based Motion Estimation 
Question: 
Which 'image enhancement' approach is best suited for subsequent 3-D/3-D 

registration? 

(a) ECG-gated FDK 

(FDK) 

(b) Bilateral-filtered 

(FFDK) 
(d) Catheter-

removed & 

bilateral-filtered 

(cathFFDK) 

(e) Constrained 

iterative few-

view (FV) 

 

 

→  Motion-compensated reconstructions are denoted with suffix -MC 

7 K. Müller et al., “Catheter Artifact Reduction (CAR) in Dynamic Cardiac Chamber Imaging with Interventional C-arm ct”,  The Third International Conference 

on Image Formation in X-Ray Computed Tomography, Salt Lake City, UT, USA, 2014, accepted for publication 

(c) Catheter-

removed (cathFDK)7 

Porcine in vivo model 

 Artis zee systems (Siemens Healthcare) 

 Acquisition 14.5 s, 30 fps, and 381 projection images 

 Heartrate of 331 bpm through moderate pacing 

 ~30 projections available for reconstruction of each 
heart phase 

 
8 K. Müller et al., “Left Ventricular Heart Phantom for Wall Motion Analysis”,  IEEE Nuclear Science Symposium and Medical Imaging Conference Record 

(NSS/MIC), 2013, Seoul, Korea, 2013 

9 available online https://conrad.stanford.edu/data/heart 
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Edge Sharpness Evaluation 

 

Quantitative Porcine Results 
Results for porcine model 2 in a systolic heart phase 

(a) FDK-MC (b) FFDK-MC (c) FV-MC (d) cathFDK-MC (e) cathFFDK-MC (f) non-gated FDK 
Fig. 25:   Zoomed results for porcine model 2. 

First Clinical Results 

(a) FDK (b) cathFDK-MC 

First results with cathFDK-MC reconstruction of a end-diastolic (3± 1 %) heart phase 

(W 2080 HU, C 110 HU, slice thickness 1 mm). 
 

Image courtesy of Dr. med. Abt and Dr. med. Köhler, Herz- und Kreislaufzentrum Rotenburg a. d. Fulda, Germany. 
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Systolic heart phase Diastolic heart phase 
 

Image courtesy of Dr. med. Abt and Dr. med. Köhler, Herz- und Kreislaufzentrum Rotenburg a. d. Fulda, Germany. 

Summary : Single-sweep 

44 

Trade-off: temporal resolution ↔  angular sampling 
 Two approaches for motion-compensated tomographic reconstruction 

• Surface-based 

• Sensitive to surface mesh generation (-) 

• Potential for interventional wall motion analysis (+) 

• Short acquisition protocol (5 s) with sinus rhythm (+) 

• Volume-based 

• High computational demand (-) 

• Reconstruction of two to four heart chambers (+) 

• Improved image quality compared to state-of-the-art methods (+) 

C-arm CT : The Future 

 Further reduce artifacts 

 Reduce imaging time and x-ray dose for multi-sweep  
acquisitions 

 Reduce computation time for single-sweep motion compensated 
reconstruction 

 New applications on the horizon… 

 

Can we achieve clinical CT image quality  
in the interventional suite? 



7/14/2015 

14 

 Reduce residual motion and streaking 

 Implement prospective gating 

Cardiac Imaging 

Conclusions 

 C-arm CT has the potential to  
◦ increase accuracy,  
◦ reduce repeat interventions,  
◦ reduce total intervention time and  
◦ reduce x-ray dose 

 Many new clinical applications are under investigation 

 Plenty of work remains to increase clinical utility :  
◦ image display, 2D-3D, cross-modality integration 

◦ fast iterative reconstruction 

◦ new hardware 
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 Reduce residual motion and streaking 

 Implement prospective gating 

Cardiac Imaging 
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 motion 

 beam hardening 

 scatter 

 undersampling 

 dynamic range limits 

Sources of Major Artifacts 

Streaking 

Shading  

Beam hardening 

High contrast objects Change in environment 

New Detector Technology Needed! 

 provide high-
resolution 
fluoroscopy 

 increase x-ray 
detection 
efficiency at high 
energies for C-
arm CT 
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One Detector fits All? 

 Competing requirements… 
◦ High resolution (75 μm for stent strut imaging, carotid plaque, other typically 

high-contrast structures) 

◦ High frame rates for good  sampling during shortest acquisition times 

◦ Excellent low-contrast resolution for quantitative perfusion imaging at 600 
μm resolution 

◦ Photon counting / energy discriminating for dose reduction and beam 
hardening correction 

And while we’re at it… 

 the dream of continuous CT-gantry-like 
rotation… 
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Guiding cellular or molecular therapies 

◦ tool useful for clinical trials 

Cath-lab image guidance 
for therapies 

Infarct 

Perfusion Imaging 

 minimum temporal 
sampling required for 
brain perfusion imaging < 
3.5 s (depends on profile 
of injected iodine?) 

 interleaved multi-sweep 
acquisitions with multi-
segment reconstruction 
increases sampling  

Cerebral Perfusion 

 Clinical CT vs. C-arm CT (2-
injection 6-sweep protocol) 

 Correlation coefficient 0.88 

 Concordance coefficient 0.75 

 Two injection vs. 3-6 injections 
did not show significant 
degradation 
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Challenge #1 : Accurate HU values 

 10 HU noise (40 HU contrast) in a 10 mm slice acquired in 10 s, 
for detection of a 10 mm diameter object … 104 
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Existing Methods 

 Remove or prevent scattered radiation  
◦ (scatter grid, slit scan) 

 Compute scatter to subtract it  
◦ (Monte Carlo, convolution-based…) 

 Measure scatter distribution and subtract it 

 

Existing Methods 

 Remove or prevent scattered radiation  
◦ (scatter grid, slit scan) 

 Compute scatter to subtract it  
◦ (Monte Carlo, convolution-based…) 

 Measure scatter distribution and subtract it 
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Primary Modulation-Based Scatter Estimation 

 Idea: Insert high frequency 
modulation pattern between the 
source and the object scanned 

 Assumption: The primary image is 
modulated. The scatter is created in 
the object and only consists of low 
frequency components. 

 Method: Estimate low frequency 
primary without scatter by Fourier 
filtering techniques   

L. Zhu, R. N. Bennett, and R. Fahrig, “Scatter correction method for x–ray CT using primary modulation:  
Theory and preliminary results,” IEEE Transactions on Medical Imaging, vol. 25, pp. 1573–1587, Dec. 2006. 

Shifted low frequency primary 

Scatter + low frequency primary 

scatter 

primary 

scatter 

primary 

High-frequency grid 

(primary modulator) 

Primary Modulation-Based Scatter Estimation 

 Advantages:   
◦ Measurement of the scatter distribution 
◦ Works with high accuracy on laboratory setups 
◦ Corrected projection data can still be used (fluoroscopy) 
 

 Drawbacks: 
◦ Requires exact rectangular pattern on the detector 
◦ Very sensitive to non-idealities of the projected modulation pattern 

(blurring, distortion, manufacturing errors of the modulator). 
◦ Sensitive to non-linearities due to polychromacity of x-rays  
 (=> ECCP). 

 
R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. Kachelrieß, Empirical cupping correction  
for CT scanners with primary modulation (ECCP)," Med. Phys., vol. 39, pp. 825-831, Feb. 2012. 

Modulation process in the raw data domain 

 Measured data: 
 

 Solving for 
primary intensity: 
 

 Error in the 
primary estimate: 

measured intensity 

Modulation pattern 

primary intensity 

Scatter intensity 

Error in 
scatter 
estimate 

L.Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, Robust Modulation-based  
Scatter Estimation for Cone-Beam CT," accepted for publication in Med. Phys. 
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Cost function? 

Gradient-based cost function 

 Minimize 
 

subject to 

 
 
 
◦ Minimized over 17x17 

pixel sub-patches 

◦ One value of scatter is 
assumed per patch 

spatial gradient 
of the image 

high-pass filter 

Scan Parameters Cadaver Head 

 80 kV 
 30 mA 
 13 ms pulse length 
 625 projections of 360° 
 244 mAs 
 No antiscatter grid 
 Modulator:  
◦ Erbium 
◦ Spacing between patches: 0.457 mm 
◦ Thickness: 0.0254 mm 
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Cadaver Head Axial Slice 

Slitscan Uncorrected Proposed Correction 

C/W = 200 HU / 800 HU  

Robust Algorithm… Accurate HU 

 Erbium modulator reduces beam hardening effects but is 
non-uniform thickness 

 new ‘image based’ (ie. non-Fourier) algorithm is robust 
against variation in modulator 

Ritschl, Fahrig and Kachelreiss 

no correction                              iPMSE                                 slot scan                             inoise reduction 

Streak Artifact Reduction 

 Number of projections contributing to a 
reconstruction is low 

 Correction should be FAST 

 (see presentation in a few minutes…) 
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from Single-sweep to Multi-sweep… 

 But we want more information… 

 Can we image soft tissue in the beating heart? 
 

 Rotation times are slow compared to CT at 0.5 s 

 New solutions are needed… 

Motivation - RF ablation for arrhythmia 

 Current treatments 

◦ medication (~50% successful)  

◦ implantable cardioverter-defibrillator  

◦ catheter ablation 

 Radiofrequency ablation (RFA) 

◦ Often a first-line therapy  

◦ Radiofrequency (RF) energy 

◦ Burn undesirable electrical foci 
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We see dead tissue! 

visualization of necrotic 
(dead) myocardial tissue 

determine the size of a heart attack 

C-arm CT 

monitor radiofrequency  
ablation treatment  


