

The I-STAR Laboratory istar.jhu.edu Imaging for Surgery, Therapy, and Radiology

JH Siewerdsen, JW Stayman, A Sisniega, G Gang, Q Cao, A Muhit, P DeJean, P Prakash

Carestream Health J Yorkston, N Packard, R Senn, D Yang

JHU Radiology JA Carrino, G Thawait, S Demehri, M Mahesh, A. Machado

Funding Support Carestream Health

NIH 2R01-CA-112163 NIH R21-AR-062293 NIH R01-EB-0188961

Clinical Motivation

Fracture / Trauma →Monitoring of healing

Insufficiency fractures Osteoporosis Dietary deficiencies Radiation therapy →Need for biomarkers

Arthritis Osteoarthritis (OA) ~30 million US adults Joint replacement →Need for early biomarkers

Rheumatoid arthritis ~1.5 million US adults Deformity and chronic pain Novel drugs →Monitoring of treatment response

Gout

~8 million US adults →DE imaging

- Imaging capabilities: Contrast resolution Joint space, tendons, ligaments
- Spatial resolution
 Bone micoarchitecure
- Bone composition (quantitative)
 Weight-bearing (functional)
 Longitudinal studies

MSK Radiology					
	Contrast resolution	Spatial resolution	Quantitative	Functional (load-bearing)	Functional (motion)
Rad First line imaging	+	++++	++	+++	÷
Fluoro Motion	+	++	+	++	+++
CT Trauma Fracture	++(+)	++	+++	+	++
MRI Joint internal derangement	+++	÷	• 4	CT (www.GE	icom)
CT - high-resolution bone - limited soft tissue					
MR – exquisite se – limited spa	oft tissue tial resolution			(Dual	Energy-CT)

A Dedicated Extremity CBCT Scanner

System Configuration Flat-panel detector (FPD) Compact gantry Sitting / standing examination

Capabilities Weight-bearing scans Natural stance High isotropic spatial resolution Multi-mode Rad / Fluoro / CBCT Simplified logistics Modest imaging dose Longitudinal studies

bijewski et al. Med Phys 2011 'Carrino et al. Radiology 2014 ''Tuominen et al. AJR 2013 ang et al. Skeletal Radiol 2015

Diagnostic Imaging Performance

Hann Fitler 0.52 mm

Soft Tissues 'UHR Soft' Protocol tels isotropic 0.6 mm voxels isotropic CBCT – MDCT comparison Bone and soft-tissue visualization tasks CBCT: 1st generation prototype MDCT: Siemens Definition

Quantitative Imaging of Bone Health

Bone health Structure: Micro-architecture (micro-CT) Composition: Bone Mineral Density BMD (DEXA / qCT) Bone Marrow Edema BME (T2-weighted MRI) (increased fluid content) Risk of fracture Mechanical competency (e.g. response to load) Osteoporosis, arthritis, insufficiency fractures

CBCT: integrated platform for bone health assessment Superior bone visualization to conventional CT

Micro-architecture: High resolution required (~100 µm) →Model-based reconstruction with deblurring →Multi-resolution model-based reconstruction (speed) →CMOS detectors

T2 |

Ex Vivo $a_{vox} = 0.1 \text{ mm}$ MDCT (Siemens Somato In Situ a_{vox} = 0.36 mm In Situ $a_{vox} = 0.1 \text{ mm}$ uhit et al. SPIE 20

Quantitative Imaging: Microarchitecture

Ultra-High-Resolution CBCT Imaging : Multi-Resolution Model-Based Reconstruction

System Matrix Image Estimate $\hat{\mu} = \arg_{\mu} \min[(A\mu - l)^T K_L^{-1} (A\mu - l) + \beta R(\mu)]$

Challenges for High Resolution PWLS System matrix A is large $_{<100 \text{ um Voxel Size}}$ $\Rightarrow N > 2000$

Multi-resolution PWLS System matrix separates into: -standard resolution component A_{STD} -fine resolution component A_{FINE}

 $\overline{y} = I_0 \exp(-A\mu)$

Multi-Resolution Reconstruction

Knee phantom on a CBCT test-bench in extremities CBCT configuration

Ultra-High-Resolution CBCT Imaging :

CMOS vs. aSi Flat Panel Higher resolution (smaller pixels) Lower electronic noise ~500 electrons/pixel Faster read-out 30 fr/sec for 30x30 cm FOV

Experimental evaluation 600 μm CsI for CMOS and Flat Panel Extremities CBCT configuration 0.4 focal spot x-ray tube 75 μm voxels, Ramp filter

Results and Future Work ~10-15% improvement in PSF

Ultra-High-Resolution CBCT Imaging : CMOS detectors

CMOS vs. aSi Flat Panel Higher resolution (smaller pixels) ower electronic noise ~500 electrons/pixel ١٥ Faster read-out 30 fr/sec for 30x30 cm FOV

Experimental evaluation 600 μm Csl for CMOS and Flat Panel Extremities CBCT configuration 0.4 focal spot x-ray tube 75 μm voxels, Ramp filter

Results and Future Work ~10-20% improvement in PSF Better delineation of trabecular detail CMOS limited by thick scintillator Analytical optimization of scintillator thicknes Task-based Detectability d'

Quantitative Imaging of Bone Health

Bone health Structure:

Structure: Micro-architecture (micro-CT) Composition: Bone Mineral Density BMD (DEXA/ qCT) Bone Marrow Edema BME (T2-weighted MRI) (increased fluid content) Risk of fracture Mechanical competency (e.g. response to load) Osteoporosis, arthritis, insufficiency fractures

CBCT: integrated platform for bone health assessment

Bone Mineral Density / Bone Marrow Edema Accurate attenuation values →Comprehensive artifact correction' BME challenging in conventional CT (partial volume from trabeculae) Material decomposition →Dual Energy (DE) imaging

.....

Quantitative Imaging: BMD

BMD calculated using CBCT and MDCT (Mindways QCT) BMD standard materials (CaHA rods) embedded in scanner door CBCT with scatter correction

DE CBCT: Experimental Study

Tissue-Mimicking Materials[•] Cortical Bone=Dipotassium Phosphate K₂HPO₄ Marrow/Fat=Ethanol Edema: Decreasing fraction of ethanol

Imaging Experiments ~10 cm diameter phantom HE: 105 kVp, 0.1 mAs/frame, ~7 mGy CTDI LE: 60 kVp, 0.8 mAs/frame, ~7 mGy CTDI

Artifact Correction Fast GPU Monte Carlo scatter correction" ~5 min correction per scan

		Volume Composition		
	Water	100% H ₂ O		
e Materials	Marrow	100% C ₂ H ₆ O		
	Cortical Bone	100% K ₂ HPO4		
	Bone75	75 mg/ml K ₂ HPO ₄ in H ₂ O		
Bas	Bone100	100 mg/ml K ₂ HPO ₄ in H ₂ 0		
Edema Inserts		Marrow	Bone100	
	10%	10%	90%	
	25%	25%	75%	
	40%	40%	60%	
	10%	25%	1/mm 0.026	

Dual Energy with Three Source CBCT

Three-Source CBCT Configuration Custom fixed-anode unit Three x-ray tubes arranged axially Increased Field-of-View Reduced cone beam artifacts New method for Dual-Energy CBCT Obviates need for double scan

Image Reconstruction in 3-Source DE CBCT

 $\begin{array}{l} \label{eq:period} \mbox{Penalized Likelihood (PL)} \\ \hat{\mu} = \arg \max_{\mu} L(\mu; y) - \beta R(\mu) \\ \mbox{Forward model } L(\mu; y) \\ \mbox{Edge-preserving Huber penalty } R \end{array}$

Low Energy reconstruction $L(\mu; y)$ involves LE_{central} projections

High Energy reconstruction $L(\mu; y)$ combines HE_{sup} and HE_{inf}

Bone and Fat Fractions in Cadaveric Knee British Kip, 7 mGy Preconstruction

Conclusions

Extremities CBCT Weight bearing Soft lissue contrast Isotropic spatial resolution (~0.5 mm) Low dose (~10 mGy) (~20-40 mGy for high-resolution MDCT)

Novel applications 3D Joint space maps Quantitative imaging of bone health

Ultra-high resolution CBCT for bone morphometry Advanced blur and noise models in PWLS Multi-resolution PWLS Improved delineation of trabeculae with CMOS Scintillator optimization Motion correction

 Quantitative CBCT of bone composition

 Peripheral qCT

 DE imaging

 BMD accuracy within 15% of "in-air" value

 Detection of edema in DE CBCT

 Marrow volume fraction changes ≥ 20%

