Maximizing the Utility of Integrated PET/MRI in Clinical Applications

Spencer Behr, MD

Department of Nuclear Medicine & Abdominal Imaging

University of California, San Francisco

PET/MR at UCSF

Device: GE's SIGNA PET/MR

- Concurrent System
- 3 Tesla MRI (750w system)
- PET
 - Silicon based PMT
 - TOF

From PET/CT to PET/MR: Considerations

1. Protocol/Workflow

2. Reporting

3. Technologists

Protocols/Workflow-Reporting-Technologists

- 1. Clear indications for both PET & MRI
 - Not by tumor type, but study type

Protocols/Workflow-Reporting-Technologists

PET/MR

Neurology

- Brain
- Oncology
- Brain, Liver, Pelvis

Cardiac

Protocols/Workflow-Reporting-Technologists

Order	Study	Protocol
PET/MR Brain	Brain MRI with FDG	Seizure Protocol
		Tumor Protocol
	Brain MRI and Amyvid PET	Dementia Protocol
PET/MR WB with Brain	Brain MRI with WB PET	Screening MR brain
PET/MR WB with Liver	FDG PET and liver MRI	WB + Eovist Liver
		WB + Gadavist Liver
PET/MR WB with pelvis	FDG PET and pelvis MRI	WB + Rectal protocol
		WB + Uterine protocol

Clinical PET/MR: FUTURE PROTOCOLS

HEAD AND NECK

Challenge: MR protocol

Time: 2 to 3 months

CARDIAC

Challenges:

- 1. Technical development
- 2. Indication (ischemia, sarcoid, etc)

Time: To be determined

What is going to be largest volume?

PET/MR Abdomen and pelvis

- Large volume already
- Surgical planning

PET/MR Head and Neck

PET/MR BRAIN

- Epilepsy
- Dementia
- Amyloid

Current low clinical PET Volume

Protocols/Workflow-Reporting-Technologists

1. Overlapping PET & MRI study types

2. Total Examination Time

Challenge: MR protocols

PET/MR: Clinical Examination Times

Currently: 90 minutes

Goal: 60 minutes

Protocols/Workflow-Reporting-Technologists

- 1. Overlapping PET & MRI study types
- 2. Total Examination Time

3. Protocols

1st Clinical PET/MR: Metastatic Prostate Cancer

Clinical PET/MR: Rectal Cancer

- 1. FDG PET
- 2. Rectal MR

FINDING:

- T2 disease
- No LN or Mets

Protocols/Workflow-Reporting-Technologists

- 1. Dual Readout
 - a. Nuclear Medicine
 - b. Specific Section for MR
- 2. Two separate reports
 - a. PET specific
 - b. Dedicated MR

Protocols/Workflow-Reporting-Technologists

Need at least one NM technologist

- 2 Technologists
 - 1 NM
 - 1 MRI
- 1 Technologist
 - Trained in both NM&MR
 - Not common training
 - Solution:
 - NM tech with onsite MR training

PET/MR Challenges

Acceptance of PET/MR

- > Imagers
- Referring Physicians

MODALITY

ATTENUATION CORRECTION

PET Only

Emission

PET/CT

CT Attenuation Map

PET/MR

Atlas Segmentation Sequences

PET/MR Challenges:

Imagers-Referrers

Q: How reliable is PET Quantification?

Accurate PET quantification essential

Staging, treatment response, restaging

Several papers have found SUV mean/max comparable between PET/MR and PET/CT

Except lung, bone and mediastinal blood

For MRAC, bone currently ignored

 • standard uptake value (SUV)

MR Bone: Cortical Bone/AC Maps

- Conventional MR sequences too short
- Ignored in most MRAC
- Solution:
 - Bone Mu maps (atlas), Zero Echo Time (ZTE)

MR Lung: Pulmonary Nodules

- CT method of choice for pulmonary nodules
- Studies have shown that MR and CT detect pulmonary nodules at a similar rate
 - 3D Dixon-based, dual-echo GRE
- Similar findings at UCSF with Ultra-short Echo Time (UTE)

MR Lung: Pulmonary Nodules

-10 mm seen

- 4 mm not seen

Courtesy of Nicholas Burris & Tom Hope

PET/MR Challenges:

Imagers-Referrers

Hesitant to change current clinical practice

- PET/CT → CT chest for pulmonary nodules
- PET/MR → Seen as experimental
- Perception of full body MR
- Scant clinical data comparing current standard-of-care imaging

PET/MR Challenges:

Imagers-Referrers

- Uncertainty of how to integrate PET/MR into the current clinical practice
 - Epilepsy:
 - Ictal studies
 - In hospital
 - SPECT with EEGs on

What have we learned?

Take away:

- 1. Clinical PET/MR is gaining momentum
- 2. Need to be patient
 - PET/MR is still young and developing
 - Similar to PET/CT, PET/MR needs to find its fit compared to SOC imaging

What have we learned?

Take away:

- 3. Imagers and referrers have to work together
 - a. Expectations and education
 - a. Referrers
 - b. None PET readers
- 4. MR and PET imagers need to work closely
 - a. MR pulmonary nodule evaluation
 - b. Compare PET/MR to SOC imaging

PET/MR: Future

Determine PET/MR role in clinical environments:

- Multisite trials
- Cost effectiveness

Refine MR bone/lung sequences

Refinement of MRAC and workflow

Reimbursement