Advanced Reconstruction Methods on GE CT Systems

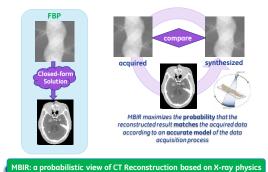
Jiang Hsieh, Jean-Baptiste Thibault, Jiahua Fan GE Healthcare

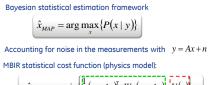
GE imagination at work

GE Dose Reduction Technology

1990 single slice	multi-slice	2010 volumetric
Dynamic Projection Filter Z-smoothing Filter Smart-Prep Collimator Tracking Auto-mA	Smart-mA Neuro-Filter EKG-mA-modulation Color Code for Kids Backlit Diode Collection Cup	Snap–shot Pulse ASiR Helical Shuttle Helical Shutter MBIR (Veo) Organ–dose-Modulation

Iterative Reconstruction Technology


Strong collaborations feed innovation cycle



FBP vs. Model-based Iterative Reconstruction

MBIR: a statistical view of reconstruction

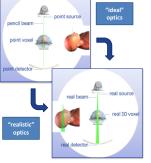


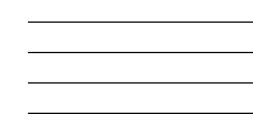
The MBIR cost function defines the image quality

Iterative Reconstruction Technology

MBIR method $\stackrel{\Delta}{=}$ Models + Cost Function+ Algorithm

Modeling Accuracy Leads to Better Image Quality





System Optics Model

- Accurate description of system optics / data acquisition process
- . 3D discrete nature of scanned object Realistic spatially-varying .
- model ÷. Account for focal-spot and X-
- ray detector nonlinearities Can include X-ray physics (BH,
- bone, etc.)

Higher spatial resolution Artifact reduction

Noise Model

GE imagination at work

- Based on x-ray physics (Poisson-Gaussian counting process)
- Relative degree of confidence in each measurement as it relates to the image
- Advanced modeling for low signal and electronic noise

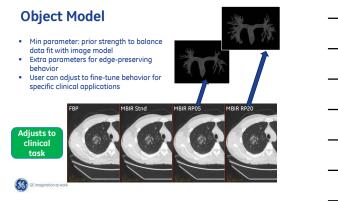
Line

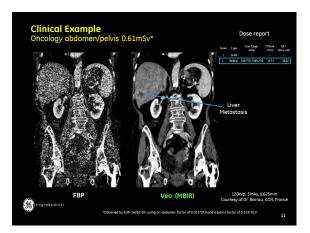
GE imagination at work

Noise reduction Artifact reduction

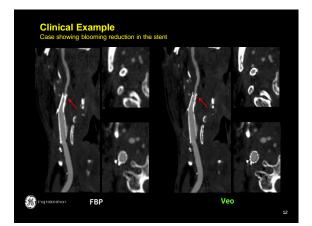
Object Model

- Prior information -> medical images
- ÷. Stabilizes estimate for under-determined reconstruction problem
- Probability distribution over the image Convex parameterization for cost
- function optimization
- Adjusts to statistics and local sampling . Nonlinearities -> linearize in clinical
- range ÷ Allows flexibility in MBIR settings

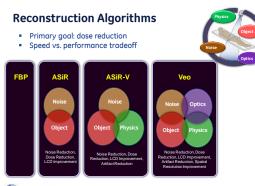

Re-defines trade-offs between noise, resolution, and contrast performance for CT imaging

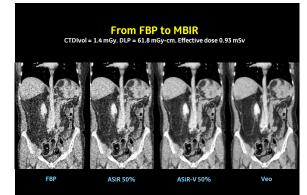

<u>Example</u>: Typical prior model: Markov Random Field (MRF) Local difference between voxel and 26 neighbors in 3D

- $U(x) = \frac{1}{q\sigma^q} \sum_{\{j,k\}\in C} b_{j-k} \rho_q \left(x_j x_k \right)$
- Construction (argument of the second of the s



GE imagination at work

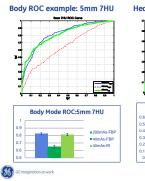


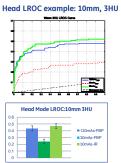


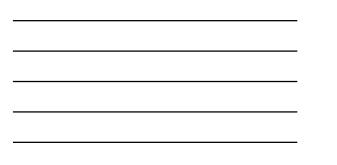
GE imagination at work

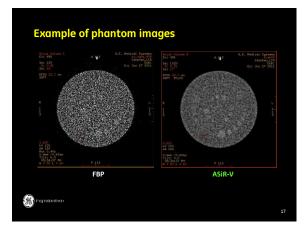
Task-based Performance Evaluation

- •


- Phontom: MITA LCD Phontom Observer: CHO Chonnel: D-DOG¹ Recort: FBP & GE ASIK-V CT sconner: GE CT systems Head mode: ROCC Analysis Body mode: ROCC Analysis Figure of merit: AUC Variance estimation: MRMC Methods One-Shot²
- Reference: 1. C.K. Abbey and H.H. Borrett, "Human- and model-observer performance in ramp-spec noise effects of regularization and object variability," Vol. 18, No. 3/March 200/JOSA. 2. B. Gollas, "One-Shot Estimate of MRMC Variance: AUC," Acad Radiol 2006; 13:353-362.







Sample Results

Summary

- Dose reduction has been one of the key CT technology drivers for the past two decades.
- The continued development of iterative reconstruction technology will likely fundamentally change the operation of a CT scanner (AsiR: thousands of global sites with millions patients, Veo: dose reduction and image quality improvement, ASiR-V: latest technology)
- Dose reduction is a journey and requires the participation from CT manufactures, CT physicists, CT operators, radiologists, professional organizations, and government agencies.

