Clinical applications of x-ray differential phase contrast imaging: Where do we stand?

Ke Li, PhD

1. Department of Medical Physics, University of Wisconsin, Madison, WI 2. Department of Radiology, University of Wisconsin, Madison, WI

DEPARTMENT OF Medical Physics UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

Acknowledgements

- Basic Science Team
- Dr. Guang-Hong Chen
- Dr. Ran Zhang
- John Garrett
- Yongshuai Ge
- Dr. Joe Zambelli
- Dr. Nick Bevins
- Dr. Zhihua Qi
- Dr. Pascal Theriault-Lauzier
- Clinical Team
 <u>UW Radiology</u>

W

W

- Dr. Wendy DeMartini
 Dr. Amy Fowler
- UW PathologyDr. Andreas Friedl
- UW Surgery
 Dr. Lee Wilke
- Industrial Partner
- Dr. Zhenxu Jing (Hologic Inc.)
- Dr. Baorui Ren (Hologic Inc.)

X-Ray: Particle or Wave?

"If X-rays be indeed ultra-violet light, then that light must posses the following properties...It is <u>not refracted</u> in passing from air into water, carbon bisulphide, aluminum, rock-salt, glass or zinc."

-W.C. Roentgen, translated from "On a New Kind of Rays," 1896

However, based on quantum mechanics developed after Roentgen discovered x-rays, we now understand that just like any other form of electromagnetic radiation, x-rays can also be described as a wave and should be able to refract.

Our question is to ask how to use the wave nature of x-rays to generate images for future medical applications?

A third contrast mechanism: Small angle scattering contrast

W

• One term of the equation describing the measured intensity has not been used.

$$I = I_0 + I_1 \cos\left(2\pi \frac{x_{\rm g}}{p_2} + \varphi_{\rm d}\right)$$

- This term reflects the amplitude of the intensity change as phase measurement is performed.
- Two factors: grating & beam quality (extrinsic), and sample characteristic (intrinsic)
- What kind of intrinsic characteristic of the image object does this term offer?

Small Angle Scatter Imaging (a.k.a. Dark-Field Imaging)

The dark field image can be extracted using the normalized oscillation amplitude

$$\varepsilon \equiv \frac{I_1}{I_0}, \qquad V_{\rm SAS} = \frac{\varepsilon^{obj}}{\varepsilon^{bkgd}} = \frac{I_0^{bkgd}}{I_0^{obj}} \frac{I_1^{obj}}{I_1^{bkgd}}$$

Pfeiffer et al, Nature Materials (2008)

$$\ln(V_{\rm SAS}) = -\frac{r^2}{4} \int dz \frac{\sigma_{\rm SAS} \rho_{\rm SAS}}{R^2(z)}$$

Chen, Bevins, Zambelli, Qi, Opt. Express (2010)

Fringe Visibility and Phase Contrast Imaging Performance

W

W

 Noise variance of phase contrast signal is inversely proportional to the square of visibility

$$\sigma^2 \propto \frac{1}{\varepsilon^2}$$

 Maximizing fringe visibility is the key in improving the imaging performance of phase contrast imaging

> Chen et al., Med Phys (2011) Li et al., Med Phys (2013)

The Author's Position Statement

In a realistic clinical multi-contrast x-ray imaging system, the absorption contrast mechanism should not be relegated to a secondary position; its performance should be maintained as much as possible, allowing the complementary information provided by phase contrast and dark field contrast "free of charge".

W

8

Potential Clinical Applications

W

- Brain imaging
 Brain tumor, Alzheimer's disease
- Lung imaging
 Emphysema and fibrosis
- Musculoskeletal imagingOsteoarthritis and rheumatoid arthritis
- Abdominal imaging
- Kidney stone
- Breast imaging

		_

Multi-contrast Tomosynthesis Images of the 🕅					
Absorption		DPC			
Dark Field		Phase			

Summary

- 0
- X-ray differential phase contrast imaging is an innovative method that is sensitive to x-ray refraction in matter
- The method is particularly adapted to visualize weakly xray absorbing soft tissues and may provide complementary information to conventional absorption contrast imaging
- The key factor of the performance of phase contrast imaging is fringe visibility, which has been significantly improved through recent technical advances
- To fully understand the clinical benefit of this method, it is essential to performance evaluations in a clinical setting and without sacrificing the performance of absorption imaging

